• Title/Summary/Keyword: vibration modes

Search Result 1,277, Processing Time 0.026 seconds

FLEXIBLE ARM POSITIONING USING $H_\infty$ CONTROL THEORY WITH OPTIMUM SENSOR LOCATION

  • Estiko, Rijanto;Nishigaya, Shinya;Moran, Antonio;Hayase, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.461-466
    • /
    • 1994
  • This paper is concerned with the positioning control of a flexible arm system using H$_{\infty}$ control theory with optimum sensor location. Firstly, by virtue of the orthogonality of the flexible modes of the flexible arm a reduced order model of the tributed parameter system(DPS) representing the arm has formulated. The dynamical coupling between the flexible arm and DC motor has been considered to formulate an motor composite model. In order to achieve precise positioning with vibration attenuation, sensors have been optimally located. Finally, a robust H$_{\infty}$ controller was designed and the performance of the positioning system has been analyzed.d.

  • PDF

Using cable finite elements to analyze parametric vibrations of stay cables in cable-stayed bridges

  • Wu, Qingxiong;Takahashi, Kazuo;Chen, Baochun
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.691-711
    • /
    • 2006
  • This paper uses the finite element method to simultaneously consider the coupled cable-deck vibrations and the parametric vibrations of stay cables in dynamic analysis of a cable-stayed bridge. The stay cables are represented by some cable finite elements, which can consider the parametric vibration of the cables. In addition to modeling stay cables using multiple link cable elements, a procedure for removing the self-weight term of cable element is proposed. A eigenvalue analysis process using dynamic condensation method for sorting out the natural modes of the girder-tower vibrations and the Rayleigh damping considering element damping for damping matrix are also proposed for dynamic analyses of cable-stayed bridges. The possibilities of using cable elements and of using global and local vibrations to evaluate the parametric vibrations of stay cables in a cable-stayed bridge are confirmed, respectively.

Eigenvalue analysis of structures with flexible random connections

  • Matheu, E.E.;Suarez, L.E.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.277-301
    • /
    • 1996
  • A finite element model of a beam element with flexible connections is used to investigate the effect of the randomness in the stiffness values on the modal properties of the structural system. The linear behavior of the connections is described by a set of random fixity factors. The element mass and stiffness matrices are function of these random parameters. The associated eigenvalue problem leads to eigenvalues and eigenvectors which are also random variables. A second order perturbation technique is used for the solution of this random eigenproblem. Closed form expressions for the 1st and 2nd order derivatives of the element matrices with respect to the fixity factors are presented. The mean and the variance of the eigenvalues and vibration modes are obtained in terms of these derivatives. Two numerical examples are presented and the results are validated with those obtained by a Monte-Carlo simulation. It is found that an almost linear statistical relation exists between the eigenproperties and the stiffness of the connections.

Design and Analysis of Ultrasonic Linear Motor Using Multilayer Piezoceramics (적층 압전세라믹을 이용한 초음파 리니어 모터의 설계 및 해석)

  • Kim, Tae-Yoal;Kim, Beam-Jin;Park, Tae-Gone;Kim, Myong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.61-64
    • /
    • 2000
  • An ultrasonic linear motor was composed of a slider and a stator vibrator including piezoelectric material and elastic material. The ultrasonic linear motors mainly consist of an ultrasonic oscillator which generates elliptical oscillations. Elliptical oscillations are generated by synthesizing two degenerated modes. The design of a stator for an ultrasonic linear motor was optimized with respect to vibration mode and direction of vibratory displacement by employing the finite element method. Applying multilayer piezoelectric ceramics. we found larger elliptical oscillations. The motors were designed by varying the width of stator vibrator and the thickness. the length and the position of multilayer piezoelectric ceramics.

  • PDF

SUBOPTIMAL VIBRATION CONTROL OF FLEXIBLE ROBOT BEARING SYSTEM BY USING A MAGNETIC BEARING

  • Lee, Chong-Won;Kim, Jong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.255-259
    • /
    • 1989
  • A suboptimal output feedback controller is designed and applied to a flexible rotor bearing system in order to control the unstable or lilghtly damped vibrations. The reduced order model is the truncated modal equation of the distributed parameter system obtained through the singular perturbation. The instability problem arising from the spillover effects caused by the uncontrolled high frequency modes is prevented through the constrained optimization by incorporating the spillover term into the performance index. The efficiency of the proposed method is demonstrated experimentally with a flexible rotor by using a magnetic bearing.

  • PDF

Dynamic Analysis of a Vehicle with Suspension Superelement Technique (서스팬션 슈우퍼엘리먼트 기법을 이용한 자동차의 동력학적 해석)

  • 정창모;유완석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.3
    • /
    • pp.450-456
    • /
    • 1988
  • Dynamic analysis of a vehicle is carried out with rigid body and flexible body models. The chassis of the vehicle is treated as flexible body in the flexible body model, and vibration normal modes are considered to account for elastic deformation of the component. Using output from the modal analysis in the finite element program, input data for the dynamic analysis with flexible body is generated. To achieve the computational efficiency, SUPERELEMENT technique is used for the vehicle suspension subsisted. The computer simulation time with suspension superelement was much reduced due to the reduction of coordinates and no kinematic constraint in the system.

Critical Speed Analysis of a Vertical Pump (펌프회전체의 임계속도해석)

  • 전오성;김정태;임병덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.5
    • /
    • pp.50-59
    • /
    • 1992
  • A critical speed analysis of a pump shaft has been investigated. Among various methods in the shaft critical speed calculation, a transfer matrix method has been examined in this research. After a brief review on the transfer matrix method, a modeling procedure for a continuous structure has been discussed. Then, a critical speed of a multistage pump shaft has been estimated up to several low modes. Throughout an analysis, parametric effects on the bearing stiffness, a degree of the modeling order, and attachmant of the impeller have been investigated. As an application example, a critical speed analysis of a verical pump which has been implemented in domestic electric power plants for cooling water circulation has been conducted in order to provide a safe operation as far as a pump vibration is concerned.

  • PDF

Dynamic deformation behavior of rubber and brass under high strain rate compressive loading (고변형률 속도 압축 하중 하에서의 고무와 황동의 동적 거동 특성)

  • 이억섭;김경준;이종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1491-1494
    • /
    • 2003
  • A specific experimental method, the Split Hopkinson Pressure Bar (SHPB) technique has been widely used to determine the dynamic material properties under the impact compressive loading conditions with strain-rate of the order of 103/s∼104/s. This type of test procedure has been used to examine the dynamic response of materials in various modes of testing. In this paper, dynamic deformation behaviors of rubber materials widely used for the isolation of vibration from varying structures under dynamic loading are determined using a Split Hopkinson Pressure Bar technique.

  • PDF

A Study on Dynamic and Acoustic Behavior of Beel Type Structure Using Finite Element Method (유한요소법을 이용한 종형 구조물의 동적거동 및 음향거동에 관한 연구)

  • 정석주
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.447-456
    • /
    • 1996
  • Dynamic characteristics of the bell-type structure including acoustic effects and transient dynamic problems were analyzed numerically. Natural frequencies, mode shapes and transient dynamic analysis used the finite element method with 3-D general shell element. Mode shapes and stress distributions of transient dynamic analysis were expressed by computer graphics. The method using this study was evaluated by comparision of theoretical results at reference papers(14), (15) and the experimental test using Fast Fourier Transform analyzer. Vibrational modes governing acoustic characteristics of the typical bell-type structure depended on the first flexural mode(4-0 mode) and the second flexural mode(6-0 mode). Asymmetric effects by Dangiwas, acoustic holes gave rise to beat frequencies, and the Dangjwa was found to be most effective. When impact load acted on the bell, stress concentration occured at the rim part of bell. It was found that the bell type structure should be designed thickly at the rim part in order to prevent impact load from stress concentration.

  • PDF

Sound Transmission Loss of Aluminium Extruded panels for Railway vehicles (철도차량용 알루미늄 압출재의 투과손실)

  • 김석현;박정철;김종년
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.662-668
    • /
    • 2000
  • Sound transmission characteristics are investigated on the aluminium extruded panels used for railway vehicles. An equivalent orthotropic plate model and mass law are applied to predict the sound transmission loss. An extruded panel specimen used in the floor of railway vehicles is manufactured and is tested to measure sound transmission loss by two reverberant chamber method. Predicted transmission loss I compared with measured values and the effect of local resonance on the transmission characteristics is identified. The results are applied to design the extruded panel having better sound insulation performance.

  • PDF