• Title/Summary/Keyword: vibration frequency measurement

Search Result 588, Processing Time 0.03 seconds

Development of Measurement System for Quantitative Measurement of Cantilever in Atomic Force Microscopy (원자간격 현미경의 캔틸레버의 정량적 특성평가를 위한 계측 시스템 개발)

  • Kweon, Hyun-Kyu;Nam, Ki-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.22-27
    • /
    • 2007
  • In this study, the two methods of stiffness measurement(Spring constant) of cantilever were proposed for quantitative measurement in Atomic Force Microscopy(AFM). As the 1st method for the measurement of stiffness, the probe method, which is used in the measurement of the semiconductor mechanical and electrical properties, was applied to the measurement of the cantilever. Experiments by the probe method were performed finding the resistance value of cantilever. As the results, the resistance was measured differently along with the dimension and the thickness of cantilever that determined the stiffness(spring constant) of the lever. As the 2nd method, the vibration characteristics(Dunkerley expression) is used to obtain the stiffness of the complex structure which is combined by AFM cantilever and the standard cantilever. We measured the resonant frequency from the complex structure using the micro stages and stereo microscope. As the results, we confirmed that the vibration characteristics(Dunkerley expression) is effected the micro complex structure of AFM cantilever.

  • PDF

The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area (도심지 발파공사장의 발파진동 특성)

  • 이연수;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.521-526
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, Z(perpendicularity) axis was the highest value in vibration level, but vertical axis was the highest value at 25m point and longitudinal axis was the highest value at 50m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, 2 axis was the highest value in vibration level, but in vibration velocity transverse axis was the highest value at ground, was vertical axis at 1st floor, was longitudinal axis at 3rd floor and was vertical and longitudinal axis at 5th floor. The vibration level and the vibration velocity of 50m point showed higher correlation value than 25m point at the ground, but those of 25m point showed higher correlation value than 50m point at the apartment.

  • PDF

PRECISION IDENTIFICATION OF ACTUATOR DISTURBANCE PARAMETER BY FREQUENCY COMPENSATION (주파수 보정법에 의한 구동기 외란 파라미터 정밀 결정)

  • Lee Hyunho;Cheon Dong-Ik;Oh Hwa-Suk
    • Bulletin of the Korean Space Science Society
    • /
    • 2005.04a
    • /
    • pp.138-142
    • /
    • 2005
  • A reaction wheel, an actuator for satellite attitude control, produces disturbance torque and force as well as its axial control torque. The disturbances have an influence on the pointing stability of high precision satellites. The measurement of disturbances for such a satellite, therefore, is necessary. The wheel's rotation, however, causes the vibration of the table and its vibration induces measurement errors, especially large near the resonance frequency of the Measurement table. For the purpose of overcoming these defects, a calibration method using frequency compensation is suggested in this paper. Disturbance parameters are identified from data examined by frequency compensation. Measurement frequency range can be expanded far higher than the resonance frequency, since the degradation of data accuracy caused by its vibration is well alleviated even in the resonance area.

  • PDF

Measurement of Static and Dynamic Displacement by Image Processing and Study for Prediction Method of Velocity and Acceleration (영상처리를 이용한 정동적 변위 계측과 속도, 가속도 추산방식 연구)

  • Heo, Seok;Kwak, Moon-Kyu;Lee, Ho-Bum
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.527-532
    • /
    • 2010
  • This paper is concerned with the measurement of static and dynamic displacement by image processing(IP) and study for prediction method of velocity and acceleration. To measure the displacement visually, the measurement system consists of a telephoto zoom camera, ccd image device and a computer. The specific target on the white board is used to calculate the displacement of the structure. The captured image is then converted into a pixel-based data and then analyzed numerically. The limitation of the system depends on the image capturing speed and the pixel-size of image. In this paper, we developed for the displacement measurement using the image processing method. The proposed method enables us to measure the vibration measurement, velocity and acceleration directly without any contact. The current resolution of the displacement measurement is limited to 1/100 millimeter scale.

  • PDF

Estimation of Cavity Vibration Frequency in Air Tubes Using Adaptive Filter (적응 필터를 이용한 관내의 공동진동주파수 추정)

  • Yang, Dong-Sung;Su, Sung-Dae;Nam, Hyun-Do
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2508-2510
    • /
    • 2001
  • Frequency of cavity vibration in air flowing tube is closely related to a velocity of air. In this research, an instrumentation system to estimate frequency of cavity vibration for measurement of the velocity and quantity of a moving fluid is implemented by using DSP TMS320C32. Measurement of the generated sound wave frequency in cavity is difficult because of environmental noise. Adaptive filters are used to eliminate this noise effectively. The estimated velocity and quantity of a moving fluid by proposed system is compared with the results measured by a standard flow meter.

  • PDF

Three-dimensional vibration measurement algorithm using one laser scanning vibrometer (한대의 LSV 를 이용한 3 차원 진동측정방법)

  • Kim, Dong-Kyu;Song, Ha-Jun;Park, Kyi-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.935-939
    • /
    • 2012
  • 3D vibration measurement is achieved using one laser scanning vibrometer(LSV) and Laser scanner(LS) by moving the LSV to three arbitrarily locations from the principle that vibration analysis based on the frequency domain is independent of the vibration signal based on time domain. The proposed system has the same effect as using three sets of LSVs. It has an advantage of reducing equipment costs. Analytical approach of obtaining in-plane and out-of-plane vibration of surface is introduced using geometrical relations between three LSV coordinates and vibration measured at three different locations.

  • PDF

The Development of Evaluation Process for Dynamic Characteristics of Door Module (자동차용 모듈화 도어의 동특성 평가 시험법 개발)

  • Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Jang, Woon-Sung;Lee, Joon-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.291-296
    • /
    • 2007
  • This study presents the evaluation process for door module. Its objective evades the resonance generated at module plate due to the operation of window regulator motor. For this study, the design improvement process is composed of experimental methods having three steps. First step is modal analysis at door assembly status for acquisition of dynamic characteristics which are modal frequency and damping. Second step is a vibration experiment to get the test mode considered an efficiency of window regulator motor. Last step is a vibration measurement by the form of $6{\times}6$ array on module plate. A vibration measurement of 6x6 array form can be got to three analysis results which are a transfer path of vibration using cross correlation function, a vibration map using OA level and a contribution by frequency band using coherent output power spectrum on module plate. These results are applied to SDM(structural dynamic modification) for design improvement to get around the resonance on module plate by the excitation of window regulator motor.

  • PDF

A Study on the Dynamic Characteristics of Door Module for Vehicle (자동차용 모듈화 도어의 동특성 분석에 관한 연구)

  • Bae, Chul-Yong;Kim, Chan-Jung;Kwon, Seong-Jin;Lee, Bong-Hyun;Jang, Woon-Sung;Lee, Joon-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1093-1101
    • /
    • 2007
  • This study presents the design improvement process for door module. Its objective evades the resonance generated at module plate due to the operation of window regulator motor. For this study, the design improvement process is composed of experimental methods having three steps. First step is modal analysis at door assembly status for acquisition of dynamic characteristics which are modal frequency and damping. Second step is a vibration experiment to get the test mode considered an efficiency of window regulator motor. Last step is a vibration measurement by the form of $6{\times}6$ array on module plate. A vibration measurement of $6{\times}6$ array form can be got to three analysis results which are a transfer path of vibration using cross correlation function, a vibration map using OA level and a contribution by frequency band using coherent output power spectrum on module plate. These results are applied to SDM(structural dynamic modification) for design improvement to get around the resonance on module plate by the excitation of window regulator motor.

A Study on Vibration Analysis During the Slab Dismantling Using the Mechanical Dismantling Method (기계식 해체 공법을 적용한 슬래브 해체 시 발생하는 진동 해석 연구)

  • Noh, You-Song;Suk, Chul-Gi;Park, Hoon
    • Explosives and Blasting
    • /
    • v.39 no.4
    • /
    • pp.1-11
    • /
    • 2021
  • In this study, the vibration data were obtained to analyze the vibration generated during dismantling of slab using the mechanical dismantling method. The obtained vibration data were classified according to the attachment device and then the waveform and dominant frequency analysis were performed. And the correlation was analyzed by the different methods of measuring the distance between the work section and the measurement point. As a result of the waveform analysis for each attachment device, there was little change in the phase of the vibration waveform and only the change in amplitude, which is the magnitude of the vibration velocity. And as a result of frequency analysis, the frequency band was lower when using a crusher method than a braker method and frequency band were close of the natural frequency of the structure to be dismantled. As a result of the correlation analysis, the separation distance was estimated a higher correlation when evaluated as the path through which the vibration propagates along the structure frame than the straight distance between the measurement point and the working section.

Subjective Assessment of Simulated Heavy Floor Impact Sounds for Alternative Rating Method (현행 중량바닥충격음 평가방법 개선을 위한 주관평가실험)

  • Shin, Hoon;Back, Geon-Jong;Song, Min-Jeong;Jang, Gil-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.581-586
    • /
    • 2008
  • This study aims to examine the existing single rating index in terms of level reduction limit of heavy-weight floor impact sound. To achieve this goal, sounds which have same loudness according to rating methods were suggested to subjects. And followings are results. 1) The rating method of measurement frequency level average is more suitable than that of other methods which are dependent on specific frequency for rating heavy-weight floor impact sound. 2) Level average for measurement frequency of 31.5Hz - 500Hz is more correspondent to psycho-acoustic response than that of measurement frequency of 63Hz - 500Hz which is for KS F 2863-2, existing rating method.

  • PDF