• 제목/요약/키워드: vibration effect estimate

검색결과 128건 처리시간 0.019초

복수 평판으로 이루어진 접수 탱크 구조물의 진동 특성에 관한 연구 (A Study on Vibration Characteristics in Water Tank with Multi-panels)

  • 배성용
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.67-74
    • /
    • 2010
  • Many tanks are installed in ship and marine structures. They are often in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of cylindrical and rectangular tanks containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the previous report, A numerical tool of vibration analysis of a 3-dimensional tank is developed by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region and mode characteristics in accordance with changing breadth of the plates are investigated numerically and discussed.

접수탱크구조의 진동특성에 관한 연구 (A Study on Vibration Characteristics in Water Tank Structure)

  • 배성용
    • 대한조선학회논문집
    • /
    • 제40권4호
    • /
    • pp.46-52
    • /
    • 2003
  • In ship structures, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages can be sometimes observed in these tanks which seem to be caused by resonance. Tank structures in ships are in contact with water and the vibration characteristics are strongly affected by the added mass of containing water. Therefore it is important to predict vibration characteristics of tank structures. In order to estimate the vibration characteristics, the fluid-structure interaction problem has to be solved precisely. In the present paper, we have developed a numerical tool of vibration analysis of 3-dimensional tank structures using finite elements for plates and boundary elements for water region. To verify the present analysis, we have made an experiment for vibration characteristics of a tank with elastic opposite panels. And the added mass effect of containing water and the effect of structural constraint between panels are investigated numerically and discussed.

접수탱크구조의 진동해석 (Vibration Analysis of a Water Tank Structures)

  • 배성용
    • 동력기계공학회지
    • /
    • 제9권4호
    • /
    • pp.65-70
    • /
    • 2005
  • A liquid storage rectangular tank structures are used in many fields of civil, mechanical and marine engineering. Especially, Ship structures have many tanks in contact with inner or outer fluid, like ballast, fuel and cargo tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tank structures. Many authors have studied vibration of cylindrical and rectangular tanks structures containing fluid. Few research on dynamic interaction among tank walls through fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass have to be considered. In the present paper, coupling effect between panels of tank structure on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region have investigated numerically and experimentally.

  • PDF

가스 파이프라인의 차량진동 응답 예측 (A Response Estimation for Vehicle Vibration of Gas Pipeline)

  • 박선준;박연수;강성후
    • 한국소음진동공학회논문집
    • /
    • 제14권1호
    • /
    • pp.40-49
    • /
    • 2004
  • In this paper, vibration response of aerial gas pipeline due to vehicle loads was quantitatively estimated through experiment and analysis in open cut construction site. The vehicle vibration of various construction machines causes serious effect to the aerial gas pipeline. The new vibration prediction equations presented in this study can estimate the vibration velocity response of the aerial gas pipeline. In the nitration prediction equations, the vehicle′s weight and traveling velocity, which are the sources of vibration, are combined into the term called, "scaled weight" Methods to reduce vibration were proposed in case the vibration velocity response of the gas pipeline exceeded the vibration criterion, using the vibration prediction equations presented in this study. One was to limit the vehicle′s traveling velocity and the other to install the isolation equipment. Both methods can be estimated quantitatively.

교량구조물의 진동영향평가를 위한 동하중 이상화모델링 기법 연구 (A Study of Load Modeling Method for Vibration Estimation of Bridge Structures)

  • 박연수;홍혜진;공강주;김정주
    • 한국방재학회 논문집
    • /
    • 제6권2호
    • /
    • pp.9-15
    • /
    • 2006
  • 토목구조물은 주로 안전성을 위주로 설계되어 왔으나 최근 들어 토목기술에 대한 환경친화적 측면이 중시되어지는 가운데 구조물의 사용성과 안정성의 비중이 커져가고 있다. 또한 기술의 발달로 재료의 고강도화가 이루어져 구조부재 자체의 크기나 단면적이 줄어들었는데 이는 교량구조물의 과도한 처짐과 진동을 동시에 야기했다. 따라서 본 연구에서는 교량 구조물의 통과주체가 되는 차량동하중과 인체보행하중이 교량에 미치는 처짐과 진동에 대한 영향을 적용 가능한 가장 이상화 된 모델링을 찾아내어 진동영향평가 할 수 있도록 하기 위한 연구를 수행하였다.

농산물 골판지포장상자의 수송 중 진동에 의한 압축강도 변화 (Effect of Vibration during Distribution Process on Compression Strength of Corrugated Fiberboard Containers for Agricultural Products)

  • 조중연;신준섭;김종경
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2008년도 춘계학술대회
    • /
    • pp.290-307
    • /
    • 2008
  • The aim of this study was to estimate adverse effect on compression strength of corrugated fiberboard containers due to vibration during distribution process. Distribution environment such as road conditions and compression strength of corrugated fiberboard containers for selected agricultural products were studied. We found that increasing humidity does not effect significantly on natural frequencies of boxes, but results in accelerative effect to decrease compression strength of boxes. Box structures and product types also effect on loss of compression strength greatly.

  • PDF

대형 컨테이너 선박의 구조 응답에 미치는 휘핑 영향도 분석 (A Study on the Whipping Phenomena Effect on the Structural Response of Large Container Ships)

  • 김범일;김민수;서순기;박재홍
    • 대한조선학회논문집
    • /
    • 제55권4호
    • /
    • pp.341-349
    • /
    • 2018
  • Recently, it has been reported that the whipping response, which is the elastic phenomenon of the ship, may be one of the causes of the ship accident. Unfortunately, the commonly used methodology for evaluating the whipping effect effectively has not been developed yet. In this study, we developed a procedure to estimate the whipping effect of hull in actual design stage. Fluid-structure interaction analysis was performed for a dominant short term sea state to obtain the time series data of vertical wave bending moment including the whipping response by slamming. In order to estimate the whipping effect by using the time series, some signal processing and statistical techniques such as low pass filtering, Weibull fitting and so on, were applied. the hydro-elasticity analysis was performed on container ships of various sizes to evaluate the whipping effect. The parameters that can affect the response of the hull vibration was selected and the effect of these parameters on whipping was analyzed.

방음벽 상단 소음저감장치의 감음성능 평가방법 연구 (A Study on the Test Method for Noise Reduction Devices Installed on the Noise Barriers)

  • 김철환;장태순;김득성;김동준;장서일
    • 한국소음진동공학회논문집
    • /
    • 제20권9호
    • /
    • pp.791-796
    • /
    • 2010
  • Installing noise barriers is the most common method for reducing the highway traffic noise to the road side residential area. After the report about edge potential concept of a noise barrier, various types of noise reducing devices(NRDs) called "noise reducers" have been suggested for getting more shielding effect on the top of highway noise barriers. But, it has been doubtful about effect of the NRDs in field because there was no appropriate and unified method to estimate the acoustic performance by using field measurement of the NRDs in Korea. In this study, the authors have considered to setup a practical method to test and estimate the acoustic performance of NRDs. For eliminating the noise reduction effect of the NRDs height itself, the source and measuring points are adjusted as highly as the NRDs height. For the frequency weighting in the estimation of the NRDs effect, the highway noise spectra were measured at asphalt and concrete road side and then averaged for a unit spectral parameter.

Natural vibration characteristics of a clamped circular plate in contact with fluid

  • Jhung, Myung Jo;Choi, Young Hwan;Kim, Hho Jung;Jeong, Kyeong Hoon
    • Structural Engineering and Mechanics
    • /
    • 제21권2호
    • /
    • pp.169-184
    • /
    • 2005
  • This study deals with the free vibration of a circular plate in contact with a fluid; submerged in fluid, beneath fluid or on fluid. An analytical method based on the finite Fourier-Bessel series expansion and Rayleigh-Ritz method is suggested. The proposed method is verified by the finite element analysis using commercial program with a good accuracy. The normalized natural frequencies are obtained in order to estimate the relative added mass effect of fluid on each vibration mode of the plate. Also, the location of plate coupled with fluid and the cases of free and bounded fluid surface are studied for the effect on the vibration characteristics.

경계조건과 두께 변화에 따른 사각탱크의 진동 특성 (Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition)

  • 배성용
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.