• Title/Summary/Keyword: vibration effect

Search Result 3,851, Processing Time 0.033 seconds

Role of Distribution Function in Vibration Related Error of Strapdown INS in Random Vibration Test

  • Abdoli, A.;Taghavi, S.H.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.302-308
    • /
    • 2014
  • In this paper, a detailed investigation of the random vibration test is presented for strapdown inertial navigation systems (INS). The effect of the random vibration test has been studied from the point of view of navigation performance. The role of distribution functions and RMS value is represented to determine a feasible method to reject or reduce vibration related error in position and velocity estimation in inertial navigation. According to a survey conducted by the authors, this is the first time that the effect of the distribution function in vibration related error has been investigated in random vibration testing of INS. Recorded data of navigation grade INS is used in offline static navigation to examine the effect of different characteristics of random vibration tests on navigation error.

Characteristics of Shear-Thinning Fluid Viscosity under Traversal Vibration (진동장에서의 전단박화 유체 점도의 특성 연구)

  • Ku Yun-Hee;Lee Ji-Hyung;Shin Sehyun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.317-320
    • /
    • 2002
  • The effect of vibration on the viscosity of a shear-thinning fluid was investigated with a newly designed pressure-scanning capillary viscometer. The viscometer was designed to measure non-Newtonian viscosity continuously over a range of shear rates at a time. Low frequency vibration was applied perpendicularly to the direction of the flow. The effect of the transversal vibration was investigated for both Newtonian fluids and non-Newtonian fluids. The experimental results showed that the vibration had no effect on the viscosity of the Newtonian fluids. However, the vibration caused a significant reduction of the shear-thinning fluid viscosity. The viscosity reduction was strongly dependent on both vibration frequency and shear rate. In addition, the viscosity reduction was affected by the amplitude of vibration, and, the bigger amplitude applied, the more viscosity reduction occurred.

  • PDF

A Case Study on Environmental Vibration Prediction : Ground Vibration Effect near from a Tunnel (환경지반진동의 예측사례 : 터널통과시 미치는 영향)

  • Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.45-50
    • /
    • 2007
  • When the walls and floor of a tunnel are excited by a train, a ground vibration energy is transmitted to the surface and to footing of a nearby buildings. Excessive vibration affected to a building structure causes undesirable effect to the structural safety and the perception on residents in building. In this paper, a simple approach is introduced to predict how much vibration, in terms of level and spectra, is transmitted through the ground from the tunnel vibration excitation. A high rise building on a tunnel is selected as an application example of this case study.

The Analysis of the Vibration Reduction Effect of the Impedance Roller in Tape Transport System (임피던스 로울러의 테이프 주행계에 대한 제진효과 분석)

  • 김중배;박영필
    • Journal of KSNVE
    • /
    • v.3 no.4
    • /
    • pp.325-330
    • /
    • 1993
  • The longitudinal vibration of the tape in the tape transport system influences the performance of the nagnetic tape-recording system. Generally it is controlled by a passive method with impedance roller which is easy to implement and cost-effective. Therefore the effect of the impedance roller in reducing the tape vibration was analyzed in this paper. The practical tape transport system was modelled mathematically as a mass-spring system. Both simulation and experimental study were carried out in order to show the vibration reduction effect of the impedance roller.

  • PDF

Study on the Effect of Elastic Wheel from the viewpoint of Noise and Vibration of railway Vehicle (방음차륜에 의한 철도차량 소음진동저감 연구)

  • 유원희;김재철;문경호;서정원;팽정광
    • Proceedings of the KSR Conference
    • /
    • 1998.05a
    • /
    • pp.291-298
    • /
    • 1998
  • The object of this study is to investigate the effect of elastic wheel from the viewpoint of noise and vibration of railway vehicle. The vibration reduction was predicted from the FRF difference between elastic wheel and solid wheel by FEM simulation. The elastic wheel and solid wheel were compared in viewpoint of carbody vibration and car interior noise level. The effect of elastic wheel on the noise and vibration of subway vehicle was obtained. But, the application of elastic wheel must be reviewed in some aspect.

  • PDF

The effect of internal axial forces of a cantilever beam with a lumped mass at its free end

  • Zhang, Jinfu
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.321-331
    • /
    • 2018
  • When a cantilever beam with a lumped mass at its free end undergoes free transverse vibration, internal axial forces are produced in the beam. Such internal axial forces have an effect on free transverse vibration of the beam. This effect is studied in this paper. The equations of motion for the beam in terms of the generalized coordinates including the effect are derived. The method for determining free transverse vibration of the beam including the effect is presented. In numerical simulations, the results of free transverse vibration of the free end of the beam including and not including the effect are obtained. Based on comparison between the results obtained, the conclusions concerning the effect are given.

3-D Vibration Analysis of Floating Structures Like Ships Using FEM-BEM

  • Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.107-112
    • /
    • 1990
  • In the vibration analysis of structure in fluid such as ships and offshore structures, the hydrodynamic added mass considerably affects the result of analysis. Therefore correct evaluation of the hydrodynamic added mass effect is required for an accurate analysis. But the correct evaluation of the effect is not simple because the added mass varies with the mode shape of vibration as well as the configuration of the structure. The universal method employed to evaluate added mass in ship hull vibration is Lewis's method via the introduction of 3 dimensional correction factor. But this conventional method is valid only for beam-like vibration.

  • PDF

Wind-induced vibration characteristics and parametric analysis of large hyperbolic cooling towers with different feature sizes

  • Ke, Shitang;Ge, Yaojun;Zhao, Lin;Tamura, Yukio
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.891-908
    • /
    • 2015
  • For a systematic study on wind-induced vibration characteristics of large hyperbolic cooling towers with different feature sizes, the pressure measurement tests are finished on the rigid body models of three representative cooling towers with the height of 155 m, 177 m and 215 m respectively. Combining the refined frequency-domain algorithm of wind-induced responses, the wind-induced average response, resonant response, background response, coupling response and wind vibration coefficients of large cooling towers with different feature sizes are obtained. Based on the calculating results, the parametric analysis on wind-induced vibration of cooling towers is carried out, e.g. the feature sizes, damping ratio and the interference effect of surrounding buildings. The discussion shows that the increase of feature sizes makes wind-induced average response and fluctuating response larger correspondingly, and the proportion of resonant response also gradually increased, but it has little effect on the wind vibration coefficient. The increase of damping ratio makes resonant response and the wind vibration coefficient decreases obviously, which brings about no effect on average response and background response. The interference effect of surrounding buildings makes the fluctuating response and wind vibration coefficient increased significantly, furthermore, the increase ranges of resonant response is greater than background response.

Thermal Effect on the Vibration Characteristics of Pretwisted Rotating Blade (열 효과를 고려한 비틀림이 있는 회전 블레이드의 진동 특성)

  • Kee, Young-Jung;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.810-815
    • /
    • 2002
  • Vibration analysis of rotating blade is the main purpose of this study. In the present work, general formulation is proposed to analyze the rotating shell-type structures including the effect of centrifugal force, Coriolis acceleration and initial twist. Furthermore, simplified equations are derived for the case of an open circular cylindrical shell. Based on the concept of degenerated shell element with the Reissner-Mindlin's assumptions, the finite element method is adopted for solving the governing equations. In addition, it is investigated the effect of thermal load on the vibration characteristics of pretwisted blade. Numerical results are summarized for the various parameters such as rotating speed, angle of pretwist and stacking sequence of a composite blade. Also, present results are compared with the previous works and experimental data.

  • PDF

Measuring the vibration and Vibration control of Railway Bridge (철도교량의 진동측정 및 방진대책)

  • 엄기영;정흥채;한성호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.929-934
    • /
    • 2002
  • There are many reasons for occurring vibration when trains run on the railway, but the typical vibration are occurring when the trains run on the elevated Railway bridge. For the settlement of the problems form the vibration, it must be performed to analyze the effect of the vibration to human bodies and adjacent area. and to establish the countermeasures. In this paper, we analyzed the effects of the vibration to the bridge itself and to adjacent structures by measuring the vibration of Yong-Dang Elevated Railway Bridge on Jeolla Line and adjacent area.

  • PDF