• Title/Summary/Keyword: vibration device

Search Result 967, Processing Time 0.03 seconds

New vibration control device and analytical method for slender structures

  • Takabatake, Hideo;Ikarashi, Fumiya
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.11-39
    • /
    • 2013
  • Since slender structures such as utility poles, radio masts, and chimneys, are essentially statically determinate structures, they often collapse during earthquakes. Although vibration control is the most logical method for improving the earthquake resistance of such structures, there are many practical problems with its implementation due to their very long natural vibration period. This paper proposes a new vibration control device to effectively prevent the collapse of slender structures subjected to strong earthquakes. The device consists of a pendulum, an elastic restraint and a lever, and is designed such that when it is attached to a slender structure, the second vibration mode of the structure corresponds to the first vibration mode of the same structure without the device attached. This is highly effective in causing the transverse motions of the device and the structure to oppose each other and so reduce the overall transverse vibration during an earthquake. In the present paper, the effectiveness of the vibration control device is first evaluated based on laboratory experiments and numerical studies. An example of applying the device to a tall chimney is then simulated. A new dynamic analytical method for slender structures with abrupt rigidity variations is then proposed.

Study on the Development of Integrated Vibration and Sound Generator (휴대폰용 일체형 음향 및 진동 발생장치 개발을 위한 연구)

  • 신태명;안진철
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.875-881
    • /
    • 2003
  • The received signal of a mobile phone is normally sensed through two independent means which are the sound generation of a speaker and vibration generation of a vibration motor. As an improvement scheme to meet the consumer's demand on weight reduction and miniaturization of a mobile phone, the design and development of an integrated vibration and sound generating device are performed in this research. To this purpose, the optimal shapes of the voice coil. the permanent magnet and the vibration plate are designed, and the excitation force applied to the vibration system of the new device is estimated and verified through theoretical analyses, computer simulation, and experiments using an expanded model. In addition, vibration performance comparison of the device with the existing vibration motor is performed, and from the overall process, therefore, the method and procedure for the vibration performance analysis of the integrated vibration and sound generating device are established.

Shock and Vibration Reduction of the Opto-Electronic Protective Device for the Press Machine (프레스 광전자식 방호장치의 충격진동 저감)

  • Choi, Seung-Ju
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.5
    • /
    • pp.13-16
    • /
    • 2011
  • The vibration and shock of the opto-electronic protective device was induced mechanical failure or fail to work correctly. In order to identify the exciting frequency components of vibration and shock, vibration signals are measured and analyzed from the mechanical power press. In addition, the modal test for the opto-electronic protective device was performed to investigate the dynamic characteristics. Some FEM simulations were carried out and then anti vibration mount was made for opto-electronic protective device. Based on the results of simulations, some kind of rubber mounts were tested to demonstrate the reduction of vibration and shock. It was verified by the test that a considerable amount of vibration and shock were reduced.

Effect of Vibration Suppression Device for GNSS/INS Integrated Navigation System Mounted on Self-Driving Vehicle

  • Park, Dong-Hyuk;Ahn, Sang-Hoon;Won, Jong-Hoon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2022
  • This paper presents a method to reduce the vibration-induced noise effect of an inertial measurement device mounted on a self-driving vehicle. The inertial sensor used in the GNSS/INS integrated navigation system of a self-driving vehicle is fixed directly on the chassis of vehicle body so that its navigation output is affected by the vibration of the vehicle's engine, resulting in the degradation of the navigational performance. Therefore, these effects must be considered when mounting the inertial sensor. In order to solve this problem, this paper proposes to use an in-house manufactured vibration suppression device and analyzes its impact on reducing the vibration effect. Experimental test results in a static scenario show that the vibration-induced noise effect is more clearly observed in the lateral direction of the vehicle, but can be effectively suppressed by using the proposed vibration suppression device compared to the case without it. In addition, the dynamic positioning test scenario shows the position, speed, and posture errors are reduced to 74%, 67%, and 14% levels, respectively.

A study on the piezoelectric vibration device for mobile phone (이동통신 단말기용 압전 진동 장치에 관한 연구)

  • Yoo, J.S.;Kwon, O.D.;Yun, Y.J.;Kang, S.H.;Lim, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.379-382
    • /
    • 2004
  • In this paper, it is investigated in advance about the PZT-based composition for piezoelectric vibration device. The specimens of piezoelectric ceramics are made of Columbite method. The piezoelectric vibration device by this composition is designed by ATILA(Magsoft) program used FEM(Finite Element Method). The vibration device used for mobile phone must be driven in the frequency of $130{\sim}200Hz$, so the resonant frequency of piezoelectricity must adjust driven frequency bandwidth. The result of analysis by ATILA is appeared dependant property of length, width, thickness and dummy weight about resonant frequency of the piezoelectric vibration device. The size of manufactured actuator is $28{\times}12{\times}0.3mm^3(length {\times}width{\times}thickness)$ and this is bimorph type. The test of manufactured piezoelectric vibration device measure displacement, acceleration and power dissipation. The piezoelectric vibration device has the advantage more than electro-magnetic motor, however the size of manufactured device is larger than electro-magnetic motor.

  • PDF

Study on Process Monitoring of Elliptical Vibration Cutting by Utilizing Internal Data in Ultrasonic Elliptical Vibration Device

  • Jung, Hongjin;Hayasaka, Takehiro;Shamoto, Eiji
    • International Journal of Precision Engineering and Manufacturing-Green Technology
    • /
    • v.5 no.5
    • /
    • pp.571-581
    • /
    • 2018
  • In the present study, monitoring of elliptical vibration cutting process by utilizing internal data in the ultrasonic elliptical vibration device without external sensors such as a dynamometer and displacement sensor is investigated. The internal data utilized here is the change of excitation frequency, i.e. resonant frequency of the device, voltages applied to the piezoelectric actuators composing the device, and electric currents flowing through the actuators. These internal data change automatically in the elliptical vibration control system in order to keep a constant elliptical vibration against the change of the cutting process. Correlativity between the process and the internal data is described by using a vibration model of ultrasonic elliptical vibration cutting and verified by several experiments, i.e. planing and mirror surface finishing of hardened die steel carried out with single crystalline diamond tools. As a result, it is proved that it is possible to estimate the elements of elliptical vibration cutting process, e.g. tool wear and machining load, which are important for stable cutting in such precision machining.

A Method to Prevent Transfer Device of Image Stabilizer from Blunting by Artificial Vibration (가진입력에 의한 손떨림 보정용 이송장치의 둔화현상 방지대책)

  • Yeom, Dong-Hae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1076-1079
    • /
    • 2009
  • This article deals with an optical image stabilizer which moves an image sensor in the direction of cancelling the vibration caused by hand shaking to prevent a photographed image from blurring. The ball-guide way method adopted as a transfer device of the image sensor is easy to be manufactured because of its simple structure and is suitable to minimize the friction between mechanisms, but has weakness of a chance of physical defect such as groove and rising. In case that the movement of the transfer device equipped with the image sensor is blunted because a ball is stuck in defects of guide way, the performance of the image stabilizer falls down drastically. We propose a method to prevent the transfer device from blunting by applying artificial vibration. At this time, the artificial vibration should be designed under consideration of dynamic characteristics and specifications of the system to be discriminated from the vibration caused by hand shaking.

Development of Portable Vibration Signal-Based Pipe Wall Thinning Inspection Device (진동신호기반 배관감육 측정시스템 개발)

  • Han, Soon-Woo;Park, Jin-Ho;Kang, To;Sohn, Ki Sung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.545-547
    • /
    • 2014
  • The portable vibration signal-based pipe wall thinning inspection device was developed in this work. Compared to wall-thinning detection using conventional ultrasonic thickness measurement gauge, the proposed device can estimate average wall thickness of wide range and be applied to in-service pipes. The measurement principle of the device was briefly described and the configrations of hardware and software were explained. It was shown that the device can gauge average wall-thickness of test specimens with high precision.

  • PDF

Kinematical Analysis and Vibrational Characteristics of Orthogonal 2-dimensional Vibration Assisted Cutting Device (직교형 2차원 진동절삭기의 기구학적 해석 및 진동 특성 고찰)

  • Loh, Byoung-Gook;Kim, Gi-Dae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.9
    • /
    • pp.903-909
    • /
    • 2012
  • In elliptical vibration cutting(EVC) where the cutting tool traces a micro-scale 2-dimensional elliptical trajectory, the kinematical and vibrational characteristics of the EVC device greatly affect cutting performance. In this study, kinematical and vibrational characteristics of an EVC device constructed with two orthogonally-arranged stacked piezoelectric actuators were investigated both analytically and experimentally. The step voltage was applied to the orthogonal EVC device and the associated displacements of the cutting tool were measured to assess kinematical characteristics of the orthogonal EVC device. To investigate the vibrational characteristic of the orthogonal EVC, sinusoidal voltage was applied to the EVC device and the resulting displacements were measured. It was found from experiments that coupling of displacements in the thrust and cutting directions and the tilt of the major axis of the elliptical trajectory exists. In addition, as the excitation frequency is in vicinity of resonant frequencies the distortion in the shape of the elliptical trajectory becomes greater and change in the rotation direction occurs. To correct the shape distortion of the elliptical trajectory, the shape correcting procedure developed for the parallel EVC device was applied for the orthogonal EVC device and it was shown that the shape correcting method successfully corrects distortion.

Vibration Analysis and Experiments of a Chip Mounting Device (칩마운터의 진동 해석 및 실험 분석)

  • 고병식;이승엽
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1039-1042
    • /
    • 2002
  • SMD(Surface Mounting Device) which mounts electronic components as IC-Chips on PCB automatically, produces a large dynamic force and vibration. The unwanted vibrations in SMD degrade the performance of the precision device and it is the major obstacle to limit its speed for mounting. This study investigated the vibration analysis of a typical SMD to predict the natural frequencies and mode shapes. To validate the finite element analysis of SMD, the FE result was compared with that of ODS measurements. It was shown that the predicted results were well correlated with the experimental modal parameters.

  • PDF