• Title/Summary/Keyword: vibration based damage detection

Search Result 143, Processing Time 0.026 seconds

Iterative damage index method for structural health monitoring

  • You, Taesun;Gardoni, Paolo;Hurlebaus, Stefan
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.89-110
    • /
    • 2014
  • Structural Health Monitoring (SHM) is an effective alternative to conventional inspections which are time-consuming and subjective. SHM can detect damage early and reduce maintenance cost and thereby help reduce the likelihood of catastrophic structural events to infrastructure such as bridges. After reviewing the Damage Index Method (DIM), an Iterative Damage Index Method (IDIM) is proposed to improve the accuracy of damage detection. These two damage detection techniques are compared based on damage on two structures, a simply supported beam and a pedestrian bridge. Compared to the traditional damage detection algorithm, the proposed IDIM is shown to be less arbitrary and more accurate.

Modal Strain Energy-based Damage Detection in Beam Structures using Three Different Sensor Types (보구조물의 모드변형에너지기반 손상 검색: 3가지 타입 센서의 비교)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.680-683
    • /
    • 2011
  • This study deals with damage detection in beam structure by using modal strain energy-based technique with three different sensor types: accelerometer, lead zirconate titanate (PZT) piezoelectric sensor and electrical strain gage. First, the use of direct piezoelectric effect of PZT sensor for dynamic strain response are presented. Next, a modal strain energy-based damage detection method is outlined. For validation, forced vibration tests are carried out on lab-scale aluminum cantilever beam. The dynamic responses are measured for several damage scenarios. Based on damage localization results, the performance of three different sensor types is evaluated.

  • PDF

Damage detection technique in existing structures using vibration-based model updating

  • Devesh K. Jaiswal;Goutam Mondal;Suresh R. Dash;Mayank Mishra
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.63-86
    • /
    • 2023
  • Structural health monitoring and damage detection are essential for assessing, maintaining, and rehabilitating structures. Most of the existing damage detection approaches compare the current state structural response with the undamaged vibrational structural response, which is unsuitable for old and existing structures where undamaged vibrational responses are absent. One of the approaches for existing structures, numerical model updating/inverse modelling, available in the literature, is limited to numerical studies with high-end software. In this study, an attempt is made to study the effectiveness of the model updating technique, simplify modelling complexity, and economize its usability. The optimization-based detection problem is addressed by using programmable open-sourced code, OpenSees® and a derivative-free optimization code, NOMAD®. Modal analysis is used for damage identification of beam-like structures with several damage scenarios. The performance of the proposed methodology is validated both numerically and experimentally. The proposed method performs satisfactorily in identifying both locations and intensity of damage in structures.

Assessment of sensitivity-based FE model updating technique for damage detection in large space structures

  • Razavi, Mojtaba;Hadidi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.261-281
    • /
    • 2020
  • Civil structures may experience progressive deterioration and damage under environmental and operational conditions over their service life. Finite element (FE) model updating method is one of the most important approaches for damage identification in structures due to its capabilities in structural health monitoring. Although various damage detection approaches have been investigated on structures, there are limited studies on large-sized space structures. Thus, this paper aims to investigate the applicability and efficiency of sensitivity-based FE model updating framework for damage identification in large space structures from a distinct point of view. This framework facilitates modeling and model updating in large and geometric complicated space structures. Considering sensitivity-based FE model updating and vibration measurements, the discrepancy between acceleration response data in real damaged structure and hypothetical damaged structure have been minimized through adjusting the updating parameters. The feasibility and efficiency of the above-mentioned approach for damage identification has finally been demonstrated with two numerical examples: a flat double layer grid and a double layer diamatic dome. According to the results, this method can detect, localize, and quantify damages in large-scaled space structures very accurately which is robust to noisy data. Also, requiring a remarkably small number of iterations to converge, typically less than four, demonstrates the computational efficiency of this method.

Vibration based damage detection in a scaled reinforced concrete building by FE model updating

  • Turker, Temel;Bayraktar, Alemdar
    • Computers and Concrete
    • /
    • v.14 no.1
    • /
    • pp.73-90
    • /
    • 2014
  • The traditional destructive tests in damage detection require high cost, long consuming time, repairing of damaged members, etc. In addition to these, powerful equipments with advanced technology have motivated development of global vibration based damage detection methods. These methods base on observation of the changes in the structural dynamic properties and updating finite element models. The existence, location, severity and effect on the structural behavior of the damages can be identified by using these methods. The main idea in these methods is to minimize the differences between analytical and experimental natural frequencies. In this study, an application of damage detection using model updating method was presented on a one storey reinforced concrete (RC) building model. The model was designed to be 1/2 scale of a real building. The measurements on the model were performed by using ten uni-axial seismic accelerometers which were placed to the floor level. The presented damage identification procedure mainly consists of five steps: initial finite element modeling, testing of the undamaged model, finite element model calibration, testing of the damaged model, and damage detection with model updating. The elasticity modulus was selected as variable parameter for model calibration, while the inertia moment of section was selected for model updating. The first three modes were taken into consideration. The possible damaged members were estimated by considering the change ratio in the inertia moment. It was concluded that the finite element model calibration was required for structures to later evaluations such as damage, fatigue, etc. The presented model updating based procedure was very effective and useful for RC structures in the damage identification.

Damage Detection of Ship Structures Using Wavelet Transformation (웨이블렛 변환 기법을 이용한 선체 구조의 결함진단)

  • Lee, Dae-Sung;Cho, Dae-Seung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.815-820
    • /
    • 2000
  • The early damage detection of large structures is very important to prevent the disaster due to its global failure. In this paper, a damage detection method of the beam-analogy structure based on the wavelet transformation of mode shape is presented. This can effectively detect the singularity of mode shape caused to the inconsistency of bending moment and shear force at the damaged part using the discrete wavelet and its inverse transforms. To investigate the validity and the applicability of the presented damage detection method, numerical simulation and experiment are carried out for the idealized beam and the real ship structures.

  • PDF

Structural Damage Detection for Metal Panel Using Embedded Sensitivity Functions (내재민감도 함수를 이용한 단열타일의 손상 탐지 기법)

  • Yang, Chul-Ho;Adams, Douglas E.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.6 s.99
    • /
    • pp.697-705
    • /
    • 2005
  • Vibration-based damage identification method using embedded sensitivity functions is discussed. The theory of embedded sensitivity functions is reviewed and applied to identify damage in a three degree-of-freedom system and a metallic panel. Embedded sensitivity functions are algebraic combinations of measured frequency response functions that reflect changes in the response of mechanical systems when mass, damping or stiffness parameters are changed. By comparing the embedded sensitivity functions with finite difference functions using undamaged and damaged frequency response functions, damage is shown to be properly detected, located and quantified in theory and practice assuming that structures of interest are only damaged in one location. Simulated and experimental results indicate that the technique is most effective when changes to frequency response functions are small to avoid distorsions in the estimated perturbations due to variations in the sensitivity functions.

Structural time-varying damage detection using synchrosqueezing wavelet transform

  • Liu, Jing-Liang;Wang, Zuo-Cai;Ren, Wei-Xin;Li, Xing-Xin
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.119-133
    • /
    • 2015
  • This paper proposed a structural time-varying damage detection method by using synchrosqueezing wavelet transform. The instantaneous frequencies of a structure with time-varying damage are first extracted using the synchrosqueezing wavelet transform. Since the proposed synchrosqueezing wavelet transform is invertible, thus each individual component can be reconstructed and the modal participation factor ratio can be extracted based on the amplitude of the analytical signals of the reconstructed individual components. Then, the new time-varying damage index is defined based on the extracted instantaneous frequencies and modal participation factor ratio. Both free and forced vibrations of a classical Duffing nonlinear system and a simply supported beam structure with abrupt and linear time-varying damage are simulated. The proposed synchrosqueezing wavelet transform method can successfully extract the instantaneous frequencies of the damaged structures under free vibration or vibration due to earthquake excitation. The results also show that the defined time-varying damage index can effectively track structural time-varying damage.

Vibration and impedance monitoring for prestress-loss prediction in PSC girder bridges

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Cho, Hyun-Man;Na, Won-Bae;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.81-94
    • /
    • 2009
  • A vibration-impedance-based monitoring method is proposed to predict the loss of prestress forces in prestressed concrete (PSC) girder bridges. Firstly, a global damage alarming algorithm using the change in frequency responses is formulated to detect the occurrence of damage in PSC girders. Secondly, a local damage detection algorithm using the change in electro-mechanical impedance features is selected to identify the prestress-loss in tendon and anchoring members. Thirdly, a prestress-loss prediction algorithm using the change in natural frequencies is selected to estimate the extent of prestress-loss in PSC girders. Finally, the feasibility of the proposed method is experimentally evaluated on a scaled PSC girder model for which acceleration responses and electro-mechanical impedances were measured for several damage scenarios of prestress-loss.

Gabor Pulse-Based Matching Pursuit Algorithm : Applications in Waveguide Damage Detection (가보 펄스 기반 정합추적 알고리즘 : 웨이브가이드 결함진단에서의 응용)

  • 선경호;홍진철;김윤영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.969-974
    • /
    • 2004
  • Although guided-waves are very efficient for long-range nondestructive damage inspection, it is not easy to extract meaningful pulses of small magnitude out of noisy signals. The ultimate goal of this research is to develop an efficient signal processing technique for the current guided-wave technology. The specific contribution of this investigation towards achieving this goal, a two-stage Gabor pulse-based matching pursuit algorithm is proposed : rough approximations with a set for predetermined parameters characterizing the Gabor pulse and fine adjustments of the parameters by optimization. The parameters estimated from the measured signal are then used to assess not only the location but also the size of a crack existing in a rod. To validate the effectiveness of the proposed method, the longitudinal wave-based damage detection in rods is considered. To estimate the crack size, Love's theory for the dispersion of longitudinal waves is employed.

  • PDF