Acknowledgement
Supported by : National Natural Science Foundation of China (NSFC)
References
- Bernardino, A. and Santos-Victor, J. (2005), "A real-time Gabor primal Sketch for visual attention", IBPRIA-2nd Iberian Conference on Pattern Recognition and Image Analysis, Estoril, Portugal.
- Chen, G.D. and Wang, Z.C. (2012), "A signal decomposition theorem with Hilbert transform and its application to narrowband time series with closely spaced frequency components", Mech. Syst. Signal Pr., 28, 258-279. https://doi.org/10.1016/j.ymssp.2011.02.002
- Daubechies, I. and Maes, S. (1996), A nonlinear squeezing of the continuous wavelet transform based on nerve models, (Eds., A. Aldroubi and M. Unser),Wavelets in Medicine and Biology, CRC Press.
- Daubechies, I., Lu, J.F. and Wu, H.T. (2011), "Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool", Appl. Comput. Harmon. A., 2(30), 243-261.
- Doebling, S.W., Farrar, C.R. and Prime M.B. (1998). "A summary review of vibration-based damage identification methods", Shock Vib. Dig., 30 (2), 91-105. https://doi.org/10.1177/058310249803000201
- Fayyadh, M.M., Razak, H.A. and Ismail, Z. (2011), "Combined modal parameters-based index for damage identification in beamlike structures: theoretical development and verification", Arch. Civil Mech. Eng., 11(3), 587-609. https://doi.org/10.1016/S1644-9665(12)60103-4
- Feldman M. (2011), "Hilbert transform applications in mechanical vibration", Mech. Syst. Signal Pr., 25(3), 735-802. https://doi.org/10.1016/j.ymssp.2010.07.018
- Golmohamadi, M., Badri, H. and Ebrahimi, A. (2012), "Damage diagnosis in bridges using wavelet", Proceedings of the IACSIT Coimbatore Conferences, Singapore.
- Hou, Z.K., Hera, A, and Shinde, A. (2006), "Wavelet-based structural health monitoring of earthquake excited structures", Comput. -Aided Civil Infrastruct. Eng., 21,268-279. https://doi.org/10.1111/j.1467-8667.2006.00434.x
- Huang, N.E. and Shen, S.S.P. (2005), Hilbert-Huang transform and its application, World Scientific Publishing Company, London.
- Huang, N.E., Shen, Z. and Long, S.R. (1999), "A new view of nonlinear water waves: the Hilbert spectrum", Annual Rev. Fluid Mech., 31,417-457. https://doi.org/10.1146/annurev.fluid.31.1.417
- Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C. and Liu, H.H. (1998), "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis", P. R. Soc. Lond. A, 454(1971), 903-995. https://doi.org/10.1098/rspa.1998.0193
- Jaishi, B. and Ren, W.X. (2006), "Damage detection by finite element model updating using modal flexibility residual", J. Sound Vib., 290(1-2), 369-387. https://doi.org/10.1016/j.jsv.2005.04.006
- Kijewski, T. and Kareem, A. (1999), "Applications of wavelet transform in earthquake, wind and ocean engineering ", Eng. Struct., 21(2),149-167. https://doi.org/10.1016/S0141-0296(97)00139-9
- Kijewski, T. and Kareem, A. (2003). "Wavelet transforms for system identification in civil engineering", Comput.-Aided Civil Infrastruct. Eng., 18(5), 339-355. https://doi.org/10.1111/1467-8667.t01-1-00312
- Kijewski, T. and Kareem, A. (2007), "Nonlinear signal analysis: time-frequency perspectives", J. Eng. Mech., 133(2), 238-245. https://doi.org/10.1061/(ASCE)0733-9399(2007)133:2(238)
- Kopsaftopoulos, F.P. and Fassois S.D. (2013), "A functional model based statistical time series method for vibration based damage detection, localization, and magnitude estimation", Mech. Syst. Signal Pr., 39(1-2), 143-161. https://doi.org/10.1016/j.ymssp.2012.08.023
- Li, C. and Liang, M. (2012a), "A generalized synchrosqueezing transform for enhancing signal time-frequency representation ", Mech. Syst. Signal Pr., 9(92), 2264-2274.
- Li, C. and Liang, M. (2012b), "Time-frequency signal analysis for gearbox fault diagnosis using a generalized synchrosqueezing transform", Mech. Syst. Signal Pr., 1(26), 205-217.
- Lin, J. and Qu, L. (2000), "Feature extraction based on morlet wavelet and its application for mechanical fault diagnosis", J. Sound Vib., 234(1), 135-148. https://doi.org/10.1006/jsvi.2000.2864
- Mallat, S. (1999), A wavelet tour of signal processing, Academic Press, New York.
- Pandey, A.K. and Biswas, M. (1994), "Damage detection in structures using changes in flexibility", J. Sound Vib., 169(1), 3-17. https://doi.org/10.1006/jsvi.1994.1002
- Rucka, M. (2011), "Damage detection in beams using wavelet transform on higher vibration modes", J. Theor. Appl. Mech, 49(2), 399-417.
- Ruzzene, M., Fasana, A., Garibaldi, L. and Piombo, B. (1997), "Natural frequencies and dampings identification using wavelet transform: application to real data", Mech. Syst. Signal Pr., 11(2), 207-218. https://doi.org/10.1006/mssp.1996.0078
- Thakur, G., Brevdo, E., Fuckar, N.S. and Wu, H.T. (2013), "The Synchrosqueezing algorithm for time-varying spectral analysis: Robustness properties and new paleoclimate applications", Signal Process, 93(5), 1079-1094. https://doi.org/10.1016/j.sigpro.2012.11.029
- Wang, J., Lin, C. and Yen, S. (2007), "A story damage index of seismically-excited buildings based on modal frequency and mode shape", Eng. Struct., 29(9), 2143-2157. https://doi.org/10.1016/j.engstruct.2006.10.018
- Wu, H.T., Flandrin, P. and Daubechies, I. (2011), "One or two frequencies? The synchrosqueezing answers", Adv. Adap. Data Anal., 13, 29-39.
- Wu, Z.H. and Huang, N.E. (2009), "Ensemble empirical mode decomposition: a noise-assisted data analysis method", Adv. Adap. Data Anal., 1(1), 11-41.
- Xu, X., Shi, Z.Y. and You, Q. (2012), "Identification of linear time-varying systems using a wavelet-based state-space method", Mech. Syst. Signal Pr., 26, 91-103. https://doi.org/10.1016/j.ymssp.2011.07.005
- Yan, W.J., Ren, W.X. and Huang, T.L. (2012), "Statistic structural damage detection based on the closed-form of element modal strain energy sensitivity", Mech. Syst. Signal Pr., 28,183-194. https://doi.org/10.1016/j.ymssp.2011.04.011
- Yan, Y.J., Cheng L., Wu, Z.Y. and Yam, L.H. (2007), "Development in vibration-based structural damage detection technique", Mech. Syst. Signal Pr., 21(5), 2198-2211. https://doi.org/10.1016/j.ymssp.2006.10.002
- Yang, Q.W. and Liu, J.K. (2006), "A coupled method for structural damage identification", J. Sound Vib., 296(1-2),401-440. https://doi.org/10.1016/j.jsv.2006.02.014
- Yang, Z. and Wang, L. (2010). "Structural damage detection by changes in natural frequencies", J. Intel. Mater. Syst. Str., 21, 309-319. https://doi.org/10.1177/1045389X09350332
Cited by
- Wavelet analysis based damage localization in steel frames with bolted connections vol.18, pp.6, 2016, https://doi.org/10.12989/sss.2016.18.6.1189
- Characteristic Analysis of Welding Crack Acoustic Emission Signals Using Synchrosqueezed Wavelet Transform vol.46, pp.6, 2018, https://doi.org/10.1520/JTE20170218
- Wavelet-based automatic identification method of axle distribution information vol.63, pp.6, 2015, https://doi.org/10.12989/sem.2017.63.6.761
- Instantaneous frequency extraction in time-varying structures using a maximum gradient method vol.22, pp.3, 2015, https://doi.org/10.12989/sss.2018.22.3.359
- Damage detection of shear buildings using frequency-change-ratio and model updating algorithm vol.23, pp.2, 2019, https://doi.org/10.12989/sss.2019.23.2.107
- Bayesian Prediction of Pre-Stressed Concrete Bridge Deflection Using Finite Element Analysis vol.19, pp.22, 2015, https://doi.org/10.3390/s19224956
- The Teager-Kaiser Energy Cepstral Coefficients as an Effective Structural Health Monitoring Tool vol.9, pp.23, 2019, https://doi.org/10.3390/app9235064
- Damage Detection in Initially Nonlinear Structures Based on Variational Mode Decomposition vol.20, pp.10, 2015, https://doi.org/10.1142/s0219455420420092
- Ensemble Classifiers and Feature-Based Methods for Structural Damage Assessment vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8899487