• Title/Summary/Keyword: vibration axis

Search Result 547, Processing Time 0.033 seconds

The Characteristics of Blasting Vibration in the Construction of Apartment and Buildings in Urban Area (도심지 발파공사장의 발파진동 특성)

  • 이연수;장서일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.521-526
    • /
    • 2004
  • In order to evaluate the effect of blasting vibration in buildings and it's resident located around blasting construction field in urban area, blasting vibration characteristics were measured the vibration level, vibration velocity. The 250g and 750g of charged powder were used at the apartment and at the ground, respectively. In the measurement of the ground, Z(perpendicularity) axis was the highest value in vibration level, but vertical axis was the highest value at 25m point and longitudinal axis was the highest value at 50m point in vibration velocity. The amount of measurement was high value when measuring point is higher than blasting source, while that of measurement was low value when measuring point is lower than blasting source. In the measurement of the apartment, 2 axis was the highest value in vibration level, but in vibration velocity transverse axis was the highest value at ground, was vertical axis at 1st floor, was longitudinal axis at 3rd floor and was vertical and longitudinal axis at 5th floor. The vibration level and the vibration velocity of 50m point showed higher correlation value than 25m point at the ground, but those of 25m point showed higher correlation value than 50m point at the apartment.

  • PDF

Analysis of Electromagnetic Phenomena and Vibration of BLDC Motor by Permanent Magnet Overhang (영구자석 오버행에 의한 BLDC Motor의 전자기적 현상 및 진동특성 해석)

  • Kang, Gyu-Hong;Kim, Duck-Hyun;Kim, Gyu-Tak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.11
    • /
    • pp.564-571
    • /
    • 2006
  • In this paper, the estimation of Z-axis thrust ripple and vibration of BLDC motor with asymmetrical permanent magnet overhang is performed by 3-D Finite Element Method (3-D FEM) and vibration experimentation. The ripple of Z-axis thrust is due to armature reaction field in BLDC motor driven to squire wave. That is generating to Z-axis vibration. The analysis results of Z-axis thrust and the vibration by Z-axis thrust ripple is validated by comparison with experimental result.

Micro-Vibration Test on a Two-Axis Gimbal Antenna System with Stepping Motors (스텝핑 모터 특성에 따른 2축 짐발 안테나 시스템의 미소진동 측정 시험)

  • Kim, Dae-Kwan;Choi, Hong-Taek;Park, Gee-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.04a
    • /
    • pp.420-424
    • /
    • 2012
  • A 2-axis gimbal system is one of main disturbance sources affecting on image jitter response of a satellite. The gimbal system can be rotated on its azimuth and elevation axes, resulting in variation of its moment of inertia and structural modes, so that generates non-linear vibration characteristics. In order to estimate the jitter response, it is an indispensable process to characterize micro-vibration disturbance of the 2-axis gimbal system. In the present research, the vibration characteristics of the 2-axis gimbal system was investigated with respect to the types of stepping motors. The micro-vibration tests were performed for 2-phase and 5-phase stepping motors. The test results show that the disturbance can be reduced with vibration attenuation ratio of 60% by replacing the 2-phase stepping motor with the 5-phase one.

  • PDF

Effect of Rubber Damper of Flywheel on the Vibration of Diesel Engine (플라이휠의 고무댐퍼가 기관(機關)의 진동(振動)에 미치는 영향(影響))

  • Myung, B.S.;Kim, S.R.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.3
    • /
    • pp.239-251
    • /
    • 1993
  • Data acquisition system and computer program developed in this study could be well used in engine vibration analysis. The system and program developed were also operated to be able to control measuring interval, number of channels, number of data. The flywheel was specially studied to provide the proper weight with rubber damper for the engine design at low level of vibration. This study was conducted to obtain basic data which affect the engine vibration. The experiment of this study was performed on original weight flywheel, weight-reduced flywheel, weight-reduced and rubber-coated flywheel, weight-reduced and damper-attached flywheel. Avarage of peak value, maximum vibration, power spectrum density based on FFT analysis are major factors of this experiment. Results were obtained as follows : 1. When rubber was inserted in the flywheel rim of which weight was reduced from 32.2kgf to 24.4 kgf, maximum vibration of the engine was decreased 48.3% at X axis, 35.5% at Y axis and 34.6% at Z axis in comparison with the flywheel of original weight. 2. When the flywheel of rubber damper was compared with the original flywheel, the average of absolute vibration for rubber damped flywheel was decreased at X, Y, Z axis and especially its decreasing rate was so high at X-axis comparing with the other flywheel, which implied that rubber damper was very useful to reducing the vibration of the engine at X axis. 3. Hysteresis losses of X, Y, Z axis were greatly decreased in the flywheel with rubber damper on rim. 4. Damped oscillation effect on X and Y axis vibration above average peak vibration by the flywheel of rubber damper on rim was larger than those by the other flywheels. 5. Power spectrums of vibration at real and imaginery part were bi-mode type. The vibration frequency of rubber dampered flywheel which weight is decreased was slightly increased as compared with original flywheel.

  • PDF

Study on Uncertainty Factors of Head Vibration Measurements

  • Cheung, Wan-Sup;Ryu, Je-Dam;Hong, Dong-Pyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.101-104
    • /
    • 2004
  • This paper addresses uncertainty issues encountered recently in measuring head vibration using the conventional 6-axis or 9-axis bite-bar Those conventional bite-bars are shown to present insufficient information to measure a complete 6 degree-of-freedom motion of head vibration. In order to overcome such limit, a theoretical measurement model that consists of four 3-axis linear accelerometers is suggested (Theoretical backgrounds presented in this paper shall have been addressed in the international congress of ICA 2004 in this April). It is shown to enable the direct measurement of three angular acceleration components and six angular velocity-dependent nonlinear terms. In audition to the three linear acceleration terms, those nine angular motion-dependent ones are found to make it possible to evaluate the general head vibration for a given position. To examine the feasibility of the proposed method, a newly designed 12-axis bite-bar was developed. Detailed experimental results obtained using the developed 12-axis bite-bar are illustrated in the presentation of this paper, which illustrates what amount of measurement accuracy provides. But, this paper provides more detailed experimental data and extended uncertainty factors.

  • PDF

Dynamic Behavior Analysis of a Helical Coil Spring Using Space Curve Vector (공간곡선 벡터에 의한 원통 코일 스프링의 동적 거동 해석)

  • 김대원;김종수
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1015-1022
    • /
    • 1998
  • This paper addresses the results of an experimental and analytical research of a helical coil spring subjected to dynamic behavior using space curve vector after considering elongation rate. Vibrations in helical coil spring can be divided into 3 modes such as vibrations of coil spring center axis' vertical direction. axis' horizontal direction, direction about center axis. However. these 3 modes are dependent one another and are characterized as coupled. The dependency was proved through both theoretically and experimentally analyzing the results of dynamic characteristics of coil spring center axis' vertical direction vibration by transfer matrix method using the governing equation of static equilibrium. Also this paper shows that pitch angle and active coils in coil spring affect the dynamic spring characteristics of the above 3 modes and are especially sensitive to the mode for vibration of axis' horizontal direction which most affects especially on dynamo stability of helical coil spring.

  • PDF

Engine Mounting System Optimization for Improve NVH (NVH 향상을 위한 엔진 설치 시스템 최적화)

  • Kim, Jang-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4665-4671
    • /
    • 2013
  • Engine mounting system is the most responsible system for NVH performance of vehicle. The vibration at idle shake, road shake, Key ON/OFF, gear shift tuned by the engine mount position and stiffness. Previously described Engine mounting system theory investigated and summarized in this paper. Decoupling of the Power train rigid mode and Reducing the angle between Torque-Roll-Axis and Elastic-roll-Axis is starting point of optimization. Multi-optimization analysis was performed because of variety simulation case and FE-model. Eventually, Find the best mount location and the stiffness has improved the performance of the vehicle NVH.

Vibration Analysis of a Nano Imprinting Stage Using CAE (CAE를 이용한 나노 임프린팅 스테이지의 진동 해석)

  • Lee, Kang-Wook;Lee, Jae-Woo;Lee, Sung-Hoon;Lim, Si-Hhyung;Jung, Jae-Il;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.579-584
    • /
    • 2008
  • A nano-imprinting stage has been widely used in various fields of nanotechnology. In this study, an analysis method of a nano-imprinting stage machine using FEM and flexible multi-body vibration has been presented. The simulation using CAE for the imprinting machine is to analyze vibration characteristics of 3-axis nano-imprinting stage and 4-axis nano-imprinting stage. Structural components such as the upper plate have been modeled with finite elements to analyze flexibility effects during the precision stage motion. In this paper flexible multi-body dynamic simulation is executed to support robust design of the precision stage mechanism.

  • PDF

Six-axis Biodynamic Response to Vertical Whole-body Vibration (수직방향 진동에 대한 인체의 6축 방향 반응특성분석)

  • Jeon, Gyeoung-Jin;Kim, Min-Seok;Ahn, Se-Jin;Jeong, Weui-Bong;Yoo, Wan-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.218-223
    • /
    • 2011
  • Seated human subjects have been exposed to vertical vibration so as to investigate six-axis biodynamic response. Sixteen males were exposed to random vertical vibration in the frequency range(3~40Hz) at one vibration magnitude(0.224m/$s^2$ r.m.s.). Forces were measured in the vertical, fore-and-aft, lateral, roll, pitch and yaw direction on the seat. The median of cross-axis apparent mass magnitude in the fore-and-aft direction could reach up to 20% of the apparent mass magnitude at resonance frequency. And the median of apparent eccentric mass magnitude in the roll direction could reach up to 15% of the apparent eccentric mass magnitude in the pitch direction at resonance frequency. But cross-axis apparent mass in the lateral direction and apparent eccentric mass in the yaw direction showed very small.

  • PDF

A survey and research of a noise & a vibration level of bridges on the Han river (한강상 교량의 소음.진동레벨 조사.연구)

  • Seo, Kwang-Suk;Lee, Yoen-Soo;Park, Young-Man;Lee, Sang-Soo;Jeon, Jae-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.278-280
    • /
    • 2007
  • This survey was carried out to provide a sound and a vibration level of bridges on the Han river. A sound and a vibration level of 6 bridges(Ban po, Cheon ho, Olympic, Jam soo, Young dong, Dong ho) were measured. The X-axis vibration level($L_{10}$) was $42{\sim}60$ dB(H), Y-axis vibration level was $41{\sim}52$ dB(H) and Z-axis vibration level was $44{\sim}77$ dB(V). The Z-axis vibration level($L_{10}$) on the midpoint of bridges was 68 dB(V), and on the joint point was 56 dB(V). The sound level was $77{\sim}84$ dB(A). The sound level of Jam soo bridge was higher than any other bridges.

  • PDF