• Title/Summary/Keyword: vibration active control

Search Result 1,036, Processing Time 0.048 seconds

Implementation of Active Sound Enrichment Control for Improving Engine Sound Quality Inside the Cabin of a Passenger Car (차량 실내공간의 가속 시 엔진음 음질 향상을 위한 실시간 능동음향증강 제어 구현)

  • Lee, Young-Sup;Kim, Jeakwan;Ryu, Seokhoon;Kim, Seonghyeon;Park, Dong Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.195-202
    • /
    • 2016
  • In this study, a concept of active sound enrichment (ASE) control system was implemented and demonstrated for improving engine sound quality inside the cabin of a passenger car during acceleration. Unlike the active noise control cancels the noise for disturbance rejection, the ASE adds additional sound to the noise for tracking control. This approach requires a new algorithm to provide additional artificial sound to the original engine sound using active control strategy to achieve a target sound profile, which is predefined to satisfy required interior sound quality. The ASE algorithm was implemented in a digital controller dSPACE DS1401 and real-time control experiment was accomplished in an actual car. The ASE control results show that the actively enriched sound of each engine order against RPM tracks the target profiles precisely and quickly and improves the discontinuity, the level ratios and the sound pressure level of each engine order. Thus it is anticipated the ASE system can be applied for the improvement of the engine sound quality inside the cabin during acceleration.

Optimized Location Selection of Active Mounting System Applied to 1D Beam Structure

  • Kim, Byeongil
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.4_1
    • /
    • pp.505-511
    • /
    • 2022
  • The objective of this article is finding optimized locations of active mounts applied to 6-DOF beam structure with two active paths. When sinusoidal excitation forces are applied to the beam structure, secondary forces from two active mounts which can minimize (ideally becoming zero) transmitted forces are calculated mathematically and the vibration attenuation performance is validated through computer simulations. When the force applied to two active mounts are relatively low, those specific locations are considered as optimized location of active mounting system. As the location of mount changes, amplitude and phase of secondary forces in each path are analyzed with 3D plots. Based on the simulation results, a criterion for selecting mounting location is suggested and it would be very useful for selecting actuators for active mounts appropriately.

Transverse Vibration Control of an Axially Moving String (축방향으로 주행하는 현의 횡진동 제어)

  • Ryu, Doo-Hyun;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.579-584
    • /
    • 2000
  • In this study. the time varying boundary control using the right boundary transverse motion on the basis of the energy flux between the moving string and the boundaries is suggested to stabilize the transverse vibration of an axially moving string. The effectiveness of the active boundary control is showed through experimental results. Sliding mode control is adopted in order to achieve velocity tracking control of the time varying right boundary to dissipate vibration energy of the string effectively. For the unmoving and moving string at various velocity under various tension the performance of the transverse vibration control using the time varying right boundary control with the suggested control scheme is experimentally demonstrated.

  • PDF

Active Control of Vibrational Intensity at a Reference Point in an Infinite, Elastic Plate (무한 탄성 평판상의 기준점에 전달되는 진동인텐시티의 능동제어)

  • 김기만
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.22-30
    • /
    • 2001
  • In this paper, active control of vibrational intensity at a reference point in an infinite, elastic plate was discussed. The plate is excised harmonically by a vibrating source, which has a vertical point force. The optimal condition of controller was investigated to minimize the vibrational intensity being transmitted from the vibrating source to a reference point. Hence the method of feedforward control was employed for the control strategy and then the cost function was evaluated to find the optimal control force. Three types of control force (Vertical force, Moment, and Coupling force (a set of vertical force and moment) ) and controller's positions were examined to define the optimal condition of the controller. The vibrational intensity at a reference point was found to be reduced down to a zero level, compared with the uncontrolled case. Especially maximum reduction of vibrational intensity was achieved when the controller was collinearly positioned between a vibrating source and a reference point.

  • PDF

Development of Active Intake Noise Control Algorithm for Improvement Control Performance under Rapid Acceleration and Disturbance (L-Point Running Average Filter를 이용한 급가속 흡기계의 능동소음제어 성능향상을 위한 알고리즘 개발)

  • 전기원;조용구;오재응;이정윤
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.780-783
    • /
    • 2004
  • Recently Intake noise has been extensively studied to reduce the engine noise. In order to diminish intake noise several resonators were added to the intake system. However this can cause a reduction of engine output power and an increase of fuel consumption. In this study, active noise control simulation of the Filtered-x LMS algorithm is applied real instrumentation intake noise data under rapid acceleration because intake noise is more excessively increased under the such a harsh condition. But the FXLMS algorithm has poor control performance when the system is disturbed. Thus modified FXLMS algorithm using L-point running average filter is developed to improve the control performance under the rapid acceleration and disturbance. The noise reduction quantity of modified Filtered-x LMS algorithm is more than original one in two cases. In the case of control for real instrumentation intake noise data, maximum residual noise of modified FXLMS algorithm is 2.5 times less than applied the FXLMS and also in the case of disturbed, the modified FXLMS algorithm shows excellent control performance but FXLMS algorithm cat not control.

  • PDF

Active Noise Control in a Duct System Using the Hybrid Control Algorithm (하이브리드 제어 알고리즘을 이용한 덕트내 능동소음제어)

  • Lee, You-Yub;Park, Sang-Gil;Oh, Jae-Eung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.288-293
    • /
    • 2009
  • This study presents the active noise control of duct noise. The duct was excited by a steady-state harmonic and white noise force and the control was performed by one control speaker attached to surface of the duct. An adaptive controller based on filtered x LMS(FXLMS) algorithm was used and controller was defined by minimizing the square of the response of the error microphone. The assemble controller, which is called a hybrid ANC(active noise control) system, was combined with feedforward and feedback controller. The feedforward ANC attenuates primary noise that is correlated with the reference signal, while the feedback ANC cancels the narrowband components of the primary noise that are not observed by the reference sensor. Furthermore, in many ANC applications, the periodic components of noise are the most intense and the feedback ANC system has the effect of reducing the spectral peaks of the primary noise, thus easing the burden of the feedforward ANC filter.

Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core

  • Ying, Z.G.;Ni, Y.Q.;Duan, Y.F.
    • Smart Structures and Systems
    • /
    • v.19 no.1
    • /
    • pp.21-31
    • /
    • 2017
  • To control the stochastic vibration of a vibration-sensitive instrument supported on a beam, the beam is designed as a sandwich structure with magneto-rheological visco-elastomer (MRVE) core. The MRVE has dynamic properties such as stiffness and damping adjustable by applied magnetic fields. To achieve better vibration control effectiveness, the optimal bounded parametric control for the MRVE sandwich beam with supported mass under stochastic and deterministic support motion excitations is proposed, and the stochastic and shock vibration suppression capability of the optimally controlled beam with multi-mode coupling is studied. The dynamic behavior of MRVE core is described by the visco-elastic Kelvin-Voigt model with a controllable parameter dependent on applied magnetic fields, and the parameter is considered as an active bounded control. The partial differential equations for horizontal and vertical coupling motions of the sandwich beam are obtained and converted into the multi-mode coupling vibration equations with the bounded nonlinear parametric control according to the Galerkin method. The vibration equations and corresponding performance index construct the optimal bounded parametric control problem. Then the dynamical programming equation for the control problem is derived based on the dynamical programming principle. The optimal bounded parametric control law is obtained by solving the programming equation with the bounded control constraint. The controlled vibration responses of the MRVE sandwich beam under stochastic and shock excitations are obtained by substituting the optimal bounded control into the vibration equations and solving them. The further remarkable vibration suppression capability of the optimal bounded control compared with the passive control and the influence of the control parameters on the stochastic vibration suppression effectiveness are illustrated with numerical results. The proposed optimal bounded parametric control strategy is applicable to smart visco-elastic composite structures under deterministic and stochastic excitations for improving vibration control effectiveness.