• Title/Summary/Keyword: vibration active control

Search Result 1,036, Processing Time 0.034 seconds

Experiment of a Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam and Performance Analysis (유연빔의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.634-639
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

  • PDF

A Simple Feed-forward Active Control Method for the Shock Response of a Flexible Beam: Experiments and Its Performance Analysis (유연보의 충격응답에 대한 단순 피드포워드 능동제어 실험 및 성능분석)

  • Pyo, Sang-Ho;Shin, Ki-Hong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.651-657
    • /
    • 2006
  • Active control method is applied to a flexible beam excited by a shock impulse in order to reduce the residual vibrations after the shock event. It is assumed that the shock input can be measured and is always occurred on the same point of the beam. If the system is well identified and the corresponding inverse system is designed reliably, it has shown that a very simple feed-forward active control method may be applied to suppress the residual vibrations without using error sensors and adaptive algorithm. Both numerical simulations and experimental results show a promising Possibility of applying to a practical problem. Also, the performance of the method is examined by considering various practical aspects : shock duration, shock magnitude, and control point.

Design and Analysis of an Active Vibration Isolation System (능동형 제진 시스템의 설계 및 해석)

  • Moon, Jun-Hee;Pahk, Heui-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.647-650
    • /
    • 2004
  • The modeling of an active vibration isolation system is accomplished by using the equivalent spring constant, mass and rotational Inertia of each component. The detailed model of the actuation module is successful for describing its frequency-domain performance but also too complicated to implement it to actual system for control so that the order of the model is reduced up to the degree that preserves its characteristic in the low frequency range. The reduced model is suitable for identifying the unknown system parameters such as damping constants of components. The overall isolation system is described by using the reduced model of the actuation module. The accurate model ing and system parameter identification that is essential for the control of the active vibration isolation system is attained successfully.

  • PDF

Application of Linear Oscillatory Actuator to Active Structural Vibration Control (Linear Oscillatory Actuator를 이용한 구조물 진동의 능동제어연구)

  • 정태영;문석준;정종안;박희창;장석명
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.248-254
    • /
    • 1996
  • In this paper active vibration control system using a linear oscillatory actuator (LOA) is studied to suppress structural vibration. Being compared with a hydraulic actuator, a LOA has simplified structure and requires a few elements, so it has lots of merits with respect to economics and maintenance. Performance test of active vibration control system using LOA is carried out on a steel test structure under base excitation. From this test it is confirmed that acceleration level of test structure is reduced near the resonance region. In the future research on the application to large to structures will be studied.

  • PDF

Semi-active fuzzy based control system for vibration reduction of a SDOF structure under seismic excitation

  • Braz-Cesar, Manuel T.;Barros, Rui C.
    • Smart Structures and Systems
    • /
    • v.21 no.4
    • /
    • pp.389-395
    • /
    • 2018
  • This paper presents the application of a semi-active fuzzy based control system for seismic response reduction of a single degree-of-freedom (SDOF) framed structure using a Magnetorheological (MR) damper. Semi-active vibration control with MR dampers has been shown to be a viable approach to protect building structures from earthquake excitation. Moreover, intelligent damping systems based on soft-computing techniques such as fuzzy logic models have the inherent robustness to deal with typical uncertainties and non-linearities present in civil engineering structures. Thus, the proposed semi-active control system uses fuzzy logic based models to simulate the behavior of MR damper and also to develop the control algorithm that computes the required control signal to command the actuator. The results of the numerical simulations show the effectiveness of the suggested semi-active control system in reducing the response of the SDOF structure.

Active mass damper system using time delay control algorithm for building structure with unknown dynamics

  • Jang, Dong-Doo;Jung, Hyung-Jo;Moon, Yeong-Jong
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.305-318
    • /
    • 2014
  • This paper numerically investigates the feasibility of an active mass damper (AMD) system using the time delay control (TDC) algorithm, which is one of the robust and adaptive control algorithms, for effectively suppressing the excessive vibration of a building structure under wind loading. Because of its several attractive features such as the simplicity and the excellent robustness to unknown system dynamics and disturbance, the TDC algorithm has the potential to be an effective control system for mitigating the vibration of civil engineering structures such as buildings and bridges. However, it has not been used for structural response reduction yet. In this study, therefore, the active control method combining an AMD system with the TDC algorithm is first proposed in order to reduce the wind-induced vibration of a building structure and its effectiveness is numerically examined. To this end, its stability analysis is first performed; and then, a series of numerical simulations are conducted. It is demonstrated that the proposed active structural control system can effectively reduce the acceleration response of the building structure.

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

Active Vibration Control System Using Electromagnet Actuator (전자기 액츄애이터를 이용한 능동 진동제어시스템)

  • Lee, Joo-Hoon;Jeon, Jeong-Woo;Hwang, Don-Ha;Kang, Dong-Sik;Choi, Young-Kiu
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2809-2811
    • /
    • 2005
  • In this paper, we address an active vibration control system, which suppresses the vibration engaged by magnetically levitated stage. The stage system consists of a levitating platen with four permanent magnetic linear synchronous motors in parallel. Each motor generates vertical force for suspension against gravity and propulsion force horizontally as well. This stage can generate six degrees of freedom motion via the vertical and horizontal forces. In the stage system, which represents the settling-time critical system, the motion of the platen vibrates mechanically. We designed an active vibration control system for suppressing vibration due to the stage moving. The command feedforward with inertial feedback algorithm is used for solving stage system's critical problems. The components of the active vibration control system are accelerometers for detecting stage tables's vibrations, a digital controller with high precise signal converters, and electromagnetic actuators.

  • PDF

The Determination of Transducer Locations for Active Structural Acoustic Control of the Radiated Sound from Vibrating Plate (평판에서 방사되는 소음의 능동구조소음제어를 위한 변환기의 위치결정)

  • 김흥섭;홍진석;이충휘;오재응
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.9
    • /
    • pp.694-701
    • /
    • 2002
  • In this paper, through the study on locations of structural transducers for active control of the radiated sound from the vibrating plate, the active structural acoustic control (ASAC) system is proposed. And, for the evaluation of the proposed location, the experiment of the active structural acoustic control is implemented using the multi-channel filtered-x LMS algorithm and an additional filter (Acoustic Prediction Filter) to estimate the radiated sound using the acceleration signals of the plate. The structural transducers are piezoceramic actuator (PZT) and accelerometer. PZT is used as an actuator to reduce the vibration and the radiated sound. To maximize the control performance, each PZT actuator is located at the position that has the largest control sensitivity of the plate bending moment in the direction of x and y coordinates and the optimal PZT location is validated experimentally. Also, to find the acoustic prediction filter accurately, two accelerometers are located at the positions that have the largest radiation efficiencies of the plate, and the proposed locations are validated by simulation using the Rayleigh integral. The multi-channel filtered-x LMS algorithm is introduced to control a complex 2-D structural vibration mode. Finding the locations of structural transducers for active structural acoustic control of the radiated sound, the active structural acoustic control (ASAC) system can be presented and validated by experiments using a real time control system.