• 제목/요약/키워드: vibration 3D modelling

검색결과 19건 처리시간 0.023초

전자발파시스템을 이용한 발파진동 3D 모델링 연구 사례 (A Case Study on Blasting Vibration 3D Modelling with Electronic-Delay System Detonator)

  • 김갑수;루일리안 양;김용균;강대우
    • 터널과지하공간
    • /
    • 제24권2호
    • /
    • pp.131-142
    • /
    • 2014
  • 본 연구는 정확한 단차부여가 가능한 전자뇌관을 사용하여, 모델링을 통한 진동예측과 실제 발파진동의 결과를 상호 비교함으로써 발파 작업 시 발생하는 진동을 예측하고 설계에 반영할 수 있는지의 가능성을 연구하였다. 모델링의 회귀분석 결과와 실제 획득한 진동 데이터의 회귀분석 결과를 비교하여 볼 때 유사성이 있는 것으로 확인되었고, 따라서 다양한 조건에서의 진동 추정이 보다 정밀성을 가질 수 있을 것으로 기대된다.

건설 소음.진동의 사전 영향성 분석에 관한 연구 (Study on Preliminary Influence Analysis of Construction Noise and Vibration)

  • 안명석;김화일;박주한
    • 화약ㆍ발파
    • /
    • 제32권2호
    • /
    • pp.25-30
    • /
    • 2014
  • 건설공사 현장에서 발생하는 소음 진동은 일시적이고 간헐적으로 발생하지만 그 영향은 매우 크다. 건설기계의 적은 소음 진동이라도 발생하면 먼 거리까지 전달되어 차음 및 방진 등의 대책이 어려워 이를 해결하기 위해 본 연구에서는 건설장비의 소음 진동 안전기준을 30m로 적용하였고 발파소음은 60m, 진동은 160m로 적용하였다. 지금까지는 2D를 사용한 모델링을 주로 사용하였으나 건물이나 산과 언덕 등 크기와 높이를 고려한 3차원 3D 모델링으로 측정 분석하여서 정확도를 높였다.

On soil-structure interaction models to simulate free vibrations and behavior under seismic loads of a RC building supported by a particular shallow foundation

  • Soelarso Soelarso;Jean-Louis Batoz;Eduard Antaluca;Fabien Lamarque
    • Coupled systems mechanics
    • /
    • 제12권5호
    • /
    • pp.461-479
    • /
    • 2023
  • The paper deals with the finite element modelling of the free vibration and structural behavior of a particular four-floor reinforced concrete structure subjected to static equivalent seismic loads and supported by a shallow foundation system called SNSF (Spider Net System Footing). The two FE models are a simple 2D Matlab model and a detailed 3D model based on solid elastic elements using Altairworks (Hypermesh and Optistruct). Both models can simulate the soil structure interaction. We concentrate on the behavior of a representative cell involving two columns on five levels. The influence of the boundary conditions on the external vertical planes of the domain are duly studied. The Matlab model appears relevant for a primary estimation of frequencies and stiffness of the whole structure under vertical and lateral loads.

Monitoring and vibration control of a fluid catalytic cracking unit

  • Battista, Ronaldo C.;Varela, Wendell D.;Gonzaga, Igor Braz N.
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.577-588
    • /
    • 2022
  • Oil refineries' Fluid Catalytic Cracking Units (FCCU) when in full operation may exhibit strong fluid dynamics caused by turbulent flow in the piping system that may induce vibrations in other mechanical and structural components of the Unity. This paper reports on the experimental-theoretical-computational program performed to get the vibration properties and the dynamic response amplitudes to find out alternative solutions to attenuate the excessive vibrations that were causing fatigue fractures in components of the bottle like reactor-regenerator of an FCC unit in operation in an existing oil refinery in Brazil. Solutions to the vibration problem were sought with the aid of a 3D finite element model calibrated with the results obtained from experimental measurements. A short description of the found solutions is given and their effectiveness are shown by means of numerical results. The solutions were guided by the concepts of structural stiffening and dynamic control performed by a nonlinear pendulum controller whose mechanical design was based on parameters determined by means of a parametric study carried out with 2D and 3D mathematical models of the coupled pendulum-structure system. The effectiveness of the proposed solutions is evaluated in terms of the fatigue life of critical welded connections.

Investigations of elastic vibration periods of tall reinforced concrete office buildings

  • Al-Balhawi, Ali;Zhang, Binsheng
    • Wind and Structures
    • /
    • 제29권3호
    • /
    • pp.209-223
    • /
    • 2019
  • The assessment of wind-induced vibration for tall reinforced concrete (RC) buildings requires the accurate estimation of their dynamic properties, e.g., the fundamental vibration periods and damping ratios. In this study, RC frame-shear wall systems designed under gravity and wind loadings have been evaluated by utilising 3D FE modelling incorporating eigen-analysis to obtain the elastic periods of vibration. The conducted parameters consist of the number of storeys, the plan aspect ratio (AR) of buildings, the core dimensions, the space efficiency (SE), and the leasing depth (LD) between the internal central core and outer frames. This analysis provides a reliable basis for further investigating the effects of these parameters and establishing new formulas for predicting the fundamental vibration periods by using regression analyses on the obtained results. The proposed constrained numerically based formula for vibration periods of tall RC frame-shear wall office buildings in terms of the height of buildings reasonably agrees with some cited formulas for vibration period from design codes and standards. However, the same proposed formula has a high discrepancy with other cited formulas from the rest of design codes and standards. Also, the proposed formula agrees well with some cited experimentally based formulas.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

Free vibration analysis of damaged beams via refined models

  • Petrolo, Marco;Carrera, Erasmo;Alawami, Ali Saeghier Ali Saeed
    • Advances in aircraft and spacecraft science
    • /
    • 제3권1호
    • /
    • pp.95-112
    • /
    • 2016
  • This paper presents the free vibration analysis of damaged beams by means of 1D (beam) advanced finite element models. The present 1D formulation stems from the Carrera Unified Formulation (CUF), and it leads to a Component-Wise (CW) modelling. By means of the CUF, any order 2D and 1D structural models can be developed in a unified and hierarchical manner, and they provide extremely accurate results with very low computational costs. The computational cost reduction in terms of total amount of DOFs ranges from 10 to 100 times less than shell and solid models, respectively. The CW provides a detailed physical description of the real structure since each component can be modelled with its material characteristics, that is, no homogenization techniques are required. Furthermore, although 1D models are exploited, the problem unknown variables can be placed on the physical surfaces of the real 3D model. No artificial surfaces or lines have to be defined to build the structural model. Global and local damages are introduced by decreasing the stiffness properties of the material in the damaged regions. The results show that the proposed 1D models can deal with damaged structures as accurately as a shell or a solid model, but with far lower computational costs. Furthermore, it is shown how the presence of damages can lead to shell-like modal shapes and torsional/bending coupling.

자동차 엔진마운트의 내구성 해석 (Durability Analysis on Automotive Engine Mount)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.141-147
    • /
    • 2012
  • Engine mount is used to soften the impact of bumper with elasticity recovery and damping capacity. Inner noise and vibration to influence the comfortableness for passenger cause the engine to the chattering phenomenon. In this study, structural analysis can be done by engine mounts designed with 3D modelling. Natural frequencies and harmonic responses are analyzed by using models with some kinds of configurations. When the simulation model is applied by the force of 600N within the range of natural frequencies, the magnitude of deformation becomes 0 to 3mm. As the number of holes around inside mount increases, the capability of vibration absorption and durability becomes larger. In case of 5holes around inside mount, it can be safest on durability. The life of mount becomes larger by changing the configuration of model. The engine mount improved with durability can be designed through the result of simulation.

제어기강성이 로봇관절의 진동에 미치는 영향 (The Effects of Controller Stiffness on the Vibration of Robot Joints)

  • 경현태;김재원;김문상
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.260-270
    • /
    • 1994
  • With the prevalent use of robot, the interests in moving speed of robot have been increasing for the purpose of upgrading performance of production. But the faster robot manipulator moves, the worse working accuracies are. And mechanical vibration is more and more serious with the increment of the moving speed of robot. So, the study on the cause and control method of robot vibration is one of the points of issue in robotics. This paper focuses on the vibration of 3 DOF parallel link drive mechanism robot. We assume that links of robot manipulator are `rigid' and joints are `flexible elements'. Governing equations of robot system including controller, servo amplifier, D.C servo motor, transmission with elasticity, and manipulator dynamics are derived. On the basis of modelling, we define `controller stiffness' by the proportional gain of controller and `stiffness of transmission'. Numerical and experimental research is performed to study vibration phenomena of robot induced from the variation of these two defined stiffnesses, and its results are shown.

GUI Modeling을 기반으로한 선박의 HVAC System 소음 해석 (The Noise Analysis of Ship HVAC System Based on GUI Modeling)

  • 이철원;김노성;최수현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1300-1305
    • /
    • 2001
  • One of the main noise sources in cabin onboard ships is HVAC system. Up to now, the HVAC system designer manually calculates the HVAC system noise, or uses the program that is generally based on text user interface. In such a case, it is difficult to use the program and also to obtain the flow induced noise. In this study, the HVAC noise analysis program has been developed, which is based on GUI user interface that include 3.D modelling and model modification modules. For calculation of the insertion loss of HVAC system elements, NEBB experimental data and plane wave theory are used. And in order to obtain the flow rate information in each HVAC elements which is used to calculate the flow induced noise calculation, Global Converging Newton-Rapson Method is used.

  • PDF