• Title/Summary/Keyword: vibration, unbalance

Search Result 311, Processing Time 0.026 seconds

Fatigue Analysis of Balance Shaft Housing Considering Non-linear Force Condition (비선형 하중 조건을 고려한 밸런스 샤프트 하우징의 내구평가)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Kwon, Sung-Jin;Lee, Bong-Hyun;Kim, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.393-398
    • /
    • 2007
  • Balance shaft has a key role in reducing a engine vibration in a vehicle and widely applied for current models. Since balance shaft module consists many sub-component and each part had its own operational characteristics, some different analysis background should be integrated into one sub-part in balance shaft module and this is the main obstacles in making a design process. Moreover, the balancing shaft rotating in high speed and such condition requires large safety factors in a design process owing to a lot of unexpected problems with the overwhelming rotation. Balance shaft is the core-component generating the intended unbalance as well as canceling the unbalance force or moment by the engine module. So, the balance shaft should meet the high fatigue resistance not to mention of NVH performance. In this paper, a design strategy focused on balance shaft is developed to build a optimal model considering a engine vibration. Putting the unbalance mass distribution as main design parameter, some candidate model is verified with structural and fatigue analysis most appropriate model is proposed here.

  • PDF

Unbalance Response Analysis of Induction Motor Rotor Considering Unbalanced Electromagnetic Forces (불평형 전자기력을 고려한 유도전동기 회전자의 불평형 응답해석)

  • 손병구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.201-209
    • /
    • 1999
  • This paper presents a general analytical method for analyzing mechanical unbalance response of unbalanced electromagnetic forces produced in induction motors with an eccentric rotor and a phase unbalance. The equations to be solved are a set of second order differential equations which give matrices with periodic coefficients that are a function of time due to the unbalanced electro-magnetic force. Unbalance response is processed by Newmark $\beta$ method. Two examples are given including an industrial application. The results show that the method proposed is satisfactory.

  • PDF

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor Considering the Flexibility of Supporting Structure (지지구조의 유연성을 고려한 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Jung, Kyung-Moon;Seo, Chan-Hee;Kim, Myung-Gyu;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.859-865
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered bearing and flexible supporting structures by using the finite element method and the mode superposition method. The appropriate finite element equations for polygon mirror are described by rotating annular sector element using Kirchhoff plate theory and von Karman non-linear strain, and its rigid body motion is also considered. The rotating components except for the polygon mirror are modeled by Timoshenko beam element including the gyroscopic effect. The flexible supporting structures are modeled by using a 4-node tetrahedron element and 4-node shell element with rotational degrees of freedom. Finite element equations of each component of the polygon mirror scanner motor and the flexible supporting structures are consistently derived by satisfying the geometric compatibility in the internal boundary between each component. The rigid link constraints are also imposed at the interface area between sleeve and sintered bearing to describe the physical motion at this interface. A global matrix equation obtained by assembling the finite element equations of each substructure is transformed to a state-space matrix-vector equation, and both damped natural frequencies and modal damping ratios are calculated by solving the associated eigenvalue problem by using the restarted Arnoldi iteration method. Unbalance responses in time and frequency domain are performed by superposing the eigenvalues and eigenvectors from the free vibration analysis. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results. This research also shows that the flexibility of supporting structures plays an important role in determining the unbalance response of the polygon mirror scanner motor.

  • PDF

Vibration Analysis of Small Universial Motor by Regression Analysis (회귀분석을 이용한 소형 유니버셜 모터의 진동해석)

  • Cha, W.J.;Choi, Y.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.86-91
    • /
    • 2002
  • The regression analysis in the six sigma process is used to reduce the vibration of an electric grinder. The vibration characteristics and the contribution of each part to overall vibration of the electric grinder is investigated through various vibration measurements and frequency analysis for the assembled and disassembled one. Then the application of the regression analysis finds out that the rotating components of the armature have more severe contributions to the overall vibration than the frequency components of the fan or the gear part, which is decided with higher value of the coefficient of determination. The unbalance and looseness of the armature and the fan are tested again by the regression analysis in order to decide how much unbalance or looseness should be reduced for the predetermined goal of vibration level of the electric grinder. These results show that the regression analysis can be a valuable tool in production line to decide where and how much faults needs to be adjusted for the reduction of vibration and noise.

  • PDF

STSAT RWA Micro-Vibration Test and Analysis (과학기술위성 반작용휠의 미소진동 측정 및 분석)

  • Oh, Shi-Hwan;Nam, Myeong-Ryong;Park, Yon-Mook;Yim, Jo-Ryeong;Keum, Jung-Hoon;Rhee, Seung-Wu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.695-698
    • /
    • 2004
  • STSAT RWA (Reaction Wheel Assembly) micro-vibration is measured using KISTLER dynamic plate that can provide the time signals of three orthogonal forces and torques simultaneously up to 400Hz. In the post-processing, measured data are evaluated with respect to the wheel spin rate in both time and frequency domains, and the static/dynamic unbalances are evaluated from the extracted first harmonic component. Also the friction torque profile at each wheel speed is estimated from the measured data. Several higher order harmonic components are observed, that comes from its rotor shape as well as the wheel bearing characteristics. One of the most peculiar characteristics of this wheel is that the dynamic properties of two radial unbalance components are much different from each other as the RWA mounting configuration on a spacecraft is different from conventional RWA mounting configuration. Rocking mode is not appeared below 400Hz for all operating speed because the wheel size is very small. The post-processed results will be used for jitter analysis of STSAT due to RWA micro-vibration.

  • PDF

Coupled Unbalance Response Analyses of a Geared Two-shaft Rotor-bearing System (기어 전동 2축 로터-베어링 시스템의 연성 불균형 응답해석)

  • 이안성;하진웅
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.8
    • /
    • pp.598-604
    • /
    • 2003
  • In this paper a general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gear-coupled two-shaft rotor-bearing system, whose shafts rotate at their different speeds from each other. Particularly, are proposed analytical solutions of the maximum and minimum radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigeration-ton turbo-chiller rotor-bearing system having a bull-pinion speed increasing gear. Bumps in the unbalance response of the driven high speed compressor rotor system have been observed at the first torsional natural frequency due to the coupling effect of lateral and torsional dynamics. Further, the proposed analytical solutions have agreed well with those obtained by a full numerical approach. The proposed analytical solutions can be generally applied to obtain the maximum and minimum radii of the unbalance response orbits of dual-shaft rotor-bearing systems coupled by bearings as well.

Finite Element Analysis of Unbalance Response of a High Speed Flexible Polygon Mirror Scanner Motor with Asymmetric Finite Element Equations (비대칭 유한 요소 방정식으로 표현되는 고속 유연 폴리곤 미러 스캐너 모터의 유한 요소 불평형 응답 해석)

  • Seo, Chan-Hee;Jung, Kyung-Moon;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1022-1027
    • /
    • 2007
  • This paper presents a method to analyze the unbalance response of a high speed polygon mirror scanner motor supported by sintered metal bearing and flexible structures by using the finite element method and the mode superposition method considering the asymmetry of the gyroscopic effect and sintered metal bearing. The eigenvalues and eigenvectors are calculated by solving the eigenvalue problem and the adjoint eigenvalue problem by using the restarted Arnoldi iteration method. The decoupled equations of motion can be obtained from global finite element motion equations by using the orthogonal relation between the right eigenvectors and left eigenvectors. The decoupled equations of motion are used to analyze the unbalance response of a high speed polygon mirror scanner motor. The validity of the proposed method is verified by comparing the simulated unbalance response with the experimental results.

  • PDF

On-line Balancing of a Ultra-high speed Rotor with Residual Unbalance (자기베어링을 이용한 잔류질량불균형이 존재하는 초고속 회전체의 온라인 밸런싱)

  • 송상호
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.1
    • /
    • pp.51-57
    • /
    • 1998
  • In order to minimize vibration problems of rotating machinery rotors have been assembled through balancing machines. Since perfect balancing is impossible, residual unbalances cause serious vibration while the rotor is in high speed region. To minimize unbalance effects of magnetic bearing systems (AMB) during rotation on-line balancing methodology was studied. Unbalances were considered as disturbances of the system. The disturbance observer was used to estimate unbalance force from measurable state and input variables. Balancing inputs computed according to LQR and outputs of the observer were applied to eliminate unbalances during high speed rotation of the AMB. the effectiveness of the on-line balancing was verified through numerical simulations.

  • PDF

Correction of Mass Unbalance of a High Precision Rotor (Impact를 이용한 정밀 고속 회전체 불평형 보정)

  • Lee, S.B.;Ihn, Y.S.;Oh, D.H.;Kim, H.Y.;Lee, H.S.;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.720-725
    • /
    • 2007
  • The unbalanced mass of a high precision rotor deteriorates mechanical performance of the rotor. The geometrical center of a rotor generally corresponds to the rotational axis of the rotor. However, this alignment carried out with a stationary rotor does not guarantee the dynamic rotor balance. There have been a number of schemes for the correction of the unbalance published for decades especially in the hard drive industry where the issues are directly affecting manufacturing costs and product performances. Realizing the significance of the problem, the present work tries to refine one of the methods that works by applying external impact during a rotor spins. A systematic way to apply the external impact to a rotating rotor has been introduced to minimize unbalance correction process time.

A Coupled Unbalance Response Analysis of Geared Two-Shaft Rotor-Bearing System (2축 로터-베어링 시스템의 연성 불균형 응답해석)

  • 이안성;하진웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.220-226
    • /
    • 2002
  • A general solution method is presented to obtain the unbalance response orbit from the finite element based equations of motion of a gear-coupled two-shaft rotor-bearing system. Particularly, are proposed the analytical solutions of major and minor axis radii of the orbit. The method has been applied to analyze the unbalance response of a 800 refrigeration-ton turbo-chiller rotor-bearing system, having a bull-pinion speed increasing gear. The bumps of unbalance responses have been observed at the first torsional natural frequency due to the coupling of lateral and torsional dynamics by the gear meshing. Further, the proposed analytical solutions have been validated with results obtained by a full numerical approach.

  • PDF