• Title/Summary/Keyword: vibration, unbalance

Search Result 311, Processing Time 0.038 seconds

Rotor Dynamics의 현황과 문제점

  • 김폴영일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.11-19
    • /
    • 1997
  • 이 글의 내용은 다음과 같다 1.서론 2.Rotor Dynamics에서의 Quotes & Misquotes/역사 바로 세우기 3.Rotor Dynamics는 이대로 좋은가\ulcorner 3.1.Rotor Dynamics와 Balancing 3.2.Balancing은 ultra-precision process 3.3.Unbalance response의 현황과 문제점 3.4.Jeffcott Rotor[Jeffcott 1919] 3.5.National Rotor Dynamics Test Facility의 필요성 4.결론

  • PDF

Selection issue on the balance shaft for a inline 4-cylinder engine as how to locate both supporting bearing and unbalance mass (직렬 4기통 엔진용 밸런스 샤프트 불평형 질량과 베어링 위치 선정 방법)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Lee, Bong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.801-806
    • /
    • 2008
  • Large quantity of bending deformation as well as rotating torque fluctuation at the balance shaft are main struggles during the operation in a high speed rotation and thereby, two issues should be cleared at the design process of balance shaft module. Since two issues are highly related with balance shaft itself and particularly much sensitive to the location of both supporting bearing and unbalance mass, the design strategy on balance shaft should be investigated at the aspect of controlling two critical issues at the early stage of balance shaft design. To tackle two main problems, the formulation of objective function that minimizes critical issues, both bending deformation as well as torque fluctuation, is suggested to derive the optimal information on balance shaft. Then, optimal informations are reviewed at the practical logics and the guideline at the selection of locations, both supporting bearing and unbalance mass, is addressed at the final chapter.

  • PDF

Optimum Balancing Using Ggenetic Algorithm (유전 알고리즘을 이용한 최적 평형잡이에 관한 연구)

  • 최원호;양보석;주호진;임동수;노철웅
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.04a
    • /
    • pp.137-141
    • /
    • 1995
  • 회전기계에서 발생하는 진동 원인 중 약 60% 이상이 불평형(unbalance)에 의한 진동이다. 불평형은 기계의 과도한 진동을 유발시킬 뿐 아니라 베어링의 수명 단축 및 소음을 발생시킨다. 따라서, 기게의 수명을 연장시키고, 기계의 성능을 향상시키며 부드럽고 진동이 없는 운전을 위하여 평형잡이(balancing)는 절대적으로 중요하다. 불평형은 축 중심선에 대하여 회전체의 질량 분포가 비대칭이기 때문에 발생하는데 그 원인으로는 부품 자체가 비대칭에서 오는 설계 또는 제도 오차, 주물의 기포 및 용접의 불균일 등에 의한 재질상의 결함, 그리고 부품조립시 형상누적공차 등에 의한 가공.조립오차 등이 있다. ISO의 정의에 따르면 평형잡이는 회전체의 질량 분포를 조사하고 필요하다면 저널의 진동과 베어링의 작용력들이 운전속도에 대응하는 주파수에서 특정한 한계내에 있도록 보증하게 하기 위한 조정을 하는 과정이다. 불평형 상태에 대한 조사도 평형잡이로 표현된다. 그러나 수정이 필요하다고 간주된다면 수행된다. 모든 회전체는 초기 불평형(initial unbalance)이라 불리는 임의의 불평형을 가지고 출발한다. 완벽하게 평형이 잡힌 회전체를 달성하는 것이 평형잡이 작업의 목적은 아니다. 임의의 잔류 불평형(residual unbalance)은 항상 허용된다. 경제적인 이유에서 회전체는 일반적으로 요구되는 적절한 허용치보다 더 이상 평형잡이를 하지 않는다. 현장에서 현장 평형잡이를 수행하게 될 경우, 가끔 계산된 수정질량이 매우 클 경우가 있다. 이때 기게의 조건상 큰 수정질량을 부착하기가 곤란한 경우가 자주 발생한다. 작은 수정질량으로 평형잡이를 할 수 있다면 기계의 안정성 면에서 매우 유리하다. 따라서 본 연구에서는 영향계수법(Influence Coefficient Method : ICM)의 기본 개념과 유전 알고리즘(Genetic Algorithm : GA)을 이용하여 회전기계의 안정성을 보장할 수 있는 허용진동 내에서의 최적 수정질량 계산법을 제시한다.

  • PDF

Vibration Control of a Sealed and Pressurized Squeeze Film Damper Supported Rotor (가압 밀봉된 스퀴즈 필름 댐퍼로 지지된 로터의 진동제어)

  • 고영호;이건복;김창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.589-593
    • /
    • 1995
  • The vibration of rotors in high speed sometimes leads to system failure or reduces the system life, and has a direct connection with stability. In this paper, the system's modelling was conducted in experimentally and the controller was designed to reduce the vibration due to the rotor unbalance using Squeeze Film Damper(SFD). SFD vibration control was achieved in constant rotating speed based on the controller designed. the control was confirmed working quite well in terms of both numerical simulation and experiment.

  • PDF

인공위성 반작용휠의 미소진동 측정 및 분석

  • Oh, Shi-Hwan;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.25-33
    • /
    • 2004
  • In this paper, we briefly introduce the micro-vibration test bench of KARI and the test and analysis method of RWA(Reaction Wheel Assembly) micro-vibration. The micro-vibration of RWA is measured on a KISTLER dynamic plate which can measure the time signal of 6 DOF simultaneously up to 400Hz. Measured data are extensively evaluated with respect to the wheel spin rate to identify the complicate wheel dynamic characteristics, and the static/dynamic unbalances are estimated from the extracted first harmonic component as a part of evaluation process. The estimated static and dynamic unbalances. 0.79gcm and 17.4gcm² respectively. The structural resonance mode and two rocking modes observed as a results of its frequency analysis. Several higher order harmonic components observed, which come from its rotor shape as well as the wheel bearing characteristics.

  • PDF

A Study for Application of Active Magnetic Bearing using Quantitative Feedback Theory (Quantitative Feedback Theory를 이용한 능동 자기베어링의 적용 연구)

  • Lee, Gwan-Yeol;Lee, Hyeong-Bok;Kim, Yeong-Bae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.11
    • /
    • pp.107-115
    • /
    • 2001
  • Most of rotating machineries supported by contact bearing accompany lowering efficiency, vibration and wear. Moreover, because of vibration, which is occurred in rotating shaft, they have the limits of driving speed and precision. The rotor system has parametric variations or external disturbances such as mass unbalance variations in long operation. Therefore, it is necessary to research about magnetic bearing, which is able to support the shaft without mechanical contact and to control rotor vibration without being affected by external disturbances or parametric changes. Magnetic bearing system in the paper is composed of position sensor, digital controller, actuating amplifier and electromagnet. This paper applied the robust control method using quantitative feedback theory (QFT) to control the magnetic bearing. It also proposed design skill of optimal controller, in case the system has structured uncertainty, unstructured uncertainty and disturbance. Reduction of vibration is verified at critical rotating speed even external disturbance exists. Unbalance response, a serious problem in rotating machinery, is improved by magnetic bearing using QFT algorithm.

  • PDF

Identification of Crack Orientation in a Simple Rotor (회전체에서의 균열 방위 결정)

  • Jun, Oh Sung;Lee, Chong-Won;Lim, Byoung Duk
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.209-214
    • /
    • 1997
  • Vibration characteristics which are typical in a cracked rotor can be utilized for detection of crack. The changing trend of harmonics at the second harmonic resonant speed according to the crack depth and the unbalance orientation has been discussed. To characterize the vibration depending on crack orientation, the unbalance and gravitational responses of the cracked rotor are calculated. An algorithm for crack orientation identification is also introduced. A trial mass is attached step by step with even angle interval along a certain circumference, and then the synchronous and second horizontal harmonic compenents of vibration are measured and curve-fitted using least square method. Numerical simulations using this method show good results.

  • PDF

Disturbance Compensation Control Design far 2-DOF Gun Stabilization System with Gear Stiffness by Using FXLMS Algorithm (기어강성을 갖는 2-자유도 포신 안정화시스템에서 FXLMS 알고리즘을 이용한 외란 보상 제어기 설계)

  • Lim, Jae-Keun;Kang, Min-Sig
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.488-493
    • /
    • 2005
  • In gun stabilization systems, the torque comes from the unbalance mass of gun and the base acceleration is an important source of disturbance which degrades stabilization performance. Fatigue of gear train is another important factor affecting structural safety problems. In this paper, a feedback control gain is designed by optimal control weighting to difference between motor and gun velocity, and a feedforward controller using FXLMS algorithm is adopted to investigate those problems. Experimental results show that the feedforward compensator based on FXLMS can reduce the disturbance effects. The directional convergence property according to initial conditions of the FXLMS is also shown through experiments.

  • PDF

Observer-based Controller Design of a Magnetic Bearing System (외란관측기에 기초한 자기베어링시스템의 제어기 설계)

  • 송상호;박영진;정성종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.470-473
    • /
    • 1995
  • There exist two critical in application of the magnetic bearing system. One is the control axis interference caused by gyroscopic effect and the other is the vibration caused by the unbalance on the rotor. To solve both problems at the same time, first, a centralized full-state feedback controller based on the LQR control theory was designed to compensate for the gyroscopic effect. Second, disturbance rejection control input based on the observer was designed to avoid the vibration causer by the unbalanced rotor. Balancing input computer accroding to LQR and output of the observer were derived in term of rotational speed. Effectiveness of the on-line balancing was verified through numerical simulation. The developed observer-based controller was also applied to the linear and nonlinear magnetic bearing systems.

  • PDF