• 제목/요약/키워드: vibrating displacement

검색결과 54건 처리시간 0.028초

막힘 방지 스프링 적용 스크린 운동 특성 분석을 통한 스크린 효율 개선 효과 분석 (The Screen Efficiency Improving Effect Analysis by the Screen Motion Characteristic Analysis Applying Blockage Prevention Spring)

  • 이한솔;유명렬;이훈
    • 자원리싸이클링
    • /
    • 제31권6호
    • /
    • pp.36-43
    • /
    • 2022
  • 순환골재 입도 분리를 위해 사용되는 일반적인 스크린은 막힘 현상으로 인해 함수 시료 처리가 제한적이다. 따라서 본 연구에서는 기존 스크린의 분리 효율을 개선하기 위하여, DEM(Discrete Element Method) 기반의 모사 실험을 통해 스프링 기반의 추가 보조 진동 장치의 우수성을 판단하였다. 스프링 디자인에 따른 변위, 진폭 및 변형 각 분석을 통해 운동 특성을 확인하였으며, 이를 스크린에 적용하여 입자의 거동을 모사하였다. 입자 모사 결과, 스프링이 적용된 스크린의 물질 흐름 및 분리 효율은 각각 9.2 kg/s, 97 %로 나타났으며, 기존 스크린과의 비교를 통해 막힘 방지 스프링의 적용은 기존 스크린을 개선할 수 있음을 확인하였다.

유·무기 섬유 혼입 터널 라이닝 콘크리트 부재의 성능 평가 (Performance Evaluation of Organic and Inorganic Fiber Reinforced Concrete in Tunnel Lining Structure)

  • 이종은;김태원;김수만;전중규
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제13권3호통권55호
    • /
    • pp.110-118
    • /
    • 2009
  • 산간 지형이 많은 국내 여건상 물류수송 및 교통 등을 위한 터널 구조물의 활용성은 매우 높다. 최근 현장에서는 공기단축 및 원가절감을 위하여 터널 굴착과 라이닝 콘크리트의 타설을 병행하는 공법이 진행되면서 굴착에 의한 진동 등의 영향으로 콘크리트 구조물 초기 재령에서 균열 및 내구성능 저하 문제가 발생하고 있다. 본 연구에서는 터널 라이닝용 콘크리트 배합에 있어서 보강재를 강섬유와 더불어 최근 국내에서 개발된 폴리아미드 섬유를 병행 사용한 콘크리트의 역학적 특성을 실험적으로 검토하였다. 또한 유 무기 섬유보강 터널 라이닝 콘크리트 부재의 하중-변위와 하중-변형률 관계를 모형 실험으로 평가하였다. 실험 결과, 보통 콘크리트에 강섬유와 폴리아미드 섬유 보강재를 하이브리드화하여 사용한 콘크리트 부재에서 구조 성능이 증진됨을 확인할 수 있었다.

ESPI를 이용한 광학식 정밀 계측 기술 (Optical technique of precision measurement using Electronic Speckle Pattern Interferometry)

  • 은재정;정영환;최평석;박해수
    • 융합신호처리학회논문지
    • /
    • 제4권4호
    • /
    • pp.40-46
    • /
    • 2003
  • 본 연구에서는 광학식 계측 기술인 ESPI에서 면외변위인 물체의 진동에 대한 분석을 수행하였다. 진동하는 물체는 고유한 노달 라인을 가지게 된다. 따라서 이를 분석함으로써 진동하는 물체에 대한 정보를 얻을 수 있다. 측정 물체로 스피커와 외팔보 평판을 사용하였으며, 이를 시간 평균 ESPI로 정성적으로 분석하였다. 본 연구의 실험 결과로 스피커에서는 진동 주파수 550Hz와 진폭 570mV에서 저차 모드 간섭무늬가 나타났으며, 진동 주파수 950Hz와 진폭 570mV에서 고차 모드 간섭무늬가 나타났다. 이러한 ESPI는 측정에 레이저를 이용하기 때문에 비파괴, 비접촉 검사이며, 높은 분해능을 가진다. 또한 레이저가 조사되는 영역이 측정 영역이 되므로 측정 물체의 크기에 제한되지 않는다.

  • PDF

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

얇은 판 스프링에 의해 지지되는 튜브의 진동 시 지지조건에 따른 마멸분석 (Wear Analysis of a Vibrating Tube supported by Thin Strip Springs incorporating the Supporting Conditions)

  • 김형규;하재욱;이영호;허성필;강흥석
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.63-70
    • /
    • 2002
  • Wear on the tube-to-spring contact is investigated experimentally. The wear is caused by the vibration of the tube while the springs support it. As for the supporting conditions, applied are the contacting normal force (P) of 5 N, just-contact (P = 0 N) and the gap of 0.1 mm. The gap condition is tried far considering the influence of simultaneous impacting and sliding on wear. Results show that the wear volume increases in the order of the gap, the just-contact and the 5 N conditions. This is explained from the contact geometry of the spring, which is convex of smooth contour. The contact shear force is regarded smaller in the case of the gap existence compared with the other conditions. Wear mechanism is considered from SEM observation of the worn surface. The variation of the normal contact traction is analysed using the finite element analysis to estimate the slip displacement range on the contact with consulting the fretting map previously obtained.

  • PDF

고 토크 초음파 모터의 설계 및 특성 (Design and characteristics of high torque ultrasonic motor)

  • 오진현;임종남;;허준;이승수;임기조
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 Techno-Fair 및 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.175-176
    • /
    • 2008
  • An ultrasonic motor of high torque with a new configuration for application in automobiles is proposed. The newly designed stator is two sided vibrator consisting of a toothed metal disk with a piezoelectric ceramic ring bonded on both faces of the disk which generates a flexural traveling wave along the circumference of disk. In this configuration, the displacement on the surface of stator may not be confined. It also produces a large vibrating force and amplitude because the vibrator is sandwiched by two piezoelectric plates. It is possible to increase the torque by improving the vibration characteristics. To compute the vibration mode of the motor of diameter 48 mm, the finite element method was used. A 6th mode was chosen as the operation mode with a resonance frequency of about 64.4 kHz. According to this design and measured its performance, a prototype was fabricated. The performance measurement of the prototype motor showed that its stall torque was about 1.8 Nm and efficiency was 37 % at 60 % of the maximum torque.

  • PDF

고토크 초음파 모터의 설계 및 특성에 관한 연구 (Design and performances of high torque ultrasonic motor)

  • 오진헌;임종남;박철현;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 추계학술대회 논문집 Vol.21
    • /
    • pp.187-188
    • /
    • 2008
  • An ultrasonic motor of high torque with a new configuration for application in automobiles is proposed. The newly designed stator is a two sided vibrator consisting of a toothed metal disk with a piezoelectric ceramic ring bonded on both faces of the disk which generates a flexural traveling wave along the circumference of disk. In this configuration, the displacement on the surface of stator may not be confined. It also produces a large vibrating force and amplitude because the vibrator is sandwiched by two piezoelectric plates. It is possible to increase the torque by improving the vibration characteristics. To compute the vibration mode of the motor of diameter 48 mm, the finite element method was used. A 6th mode was chosen as the operation mode with a resonance frequency of about 64.4 kHz. According to this design and measured its performance, a prototype was fabricated. The performance measurement of the prototype motor showed that its stall torque was about 1.8 Nm and efficiency was 37% at 60% of the maximum torque.

  • PDF

자기감응 액추에이터를 이용한 능동소음제어 (Active Noise Control Using Sensory Actuator)

  • 고병식
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1573-1581
    • /
    • 1996
  • This paper present as experimental demonstratio of DSP and a sensory actuator that is used to actively control sound transmission/radiation through a vibrating plate. A plane acoustic wave incident on a clamped, thin circular plate was used as a noise source, and a sensory actuator bounded to the plate was used to control and sense vibration of the plate. The sound transmission reduction problem was tranformed as a structural vibration control problem that actively control the structural vibration modes coupled to acoustic modes. The results show that the first structural vibration mode is controlled with a reduction of 78 percent in the displacement and velocity of the plate. This corresponds to a 13dB reduction in the acoustic response. These experimental results indicate that a sensory actuator bounded to the plate can be employed to attenuate the sound transmitted to radiated from the plate.

레이저 도플러 진동계를 이용한 진동변위와 주파수 측정방법 연구 (A Study on the method for the measurement of vibrating amplitude and frequency with Laser Doppler Vibrometer)

  • 김성훈;김호성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 E
    • /
    • pp.1824-1827
    • /
    • 1998
  • A Laser Doppler Vibrometer(LDV) was developed using He-Ne laser as a light source. The heterodyne method was employed and its output signal was digitally processed with a $\mu$-processor and the result was displayed with LCD. The frequency shifted object beam(40 MHz) by a Bragg cell was focused on the surface of the moving target and the Doppler shifted reflected beam was recombined with reference beam at the fast photodetector to produce frequency modulated signal centered at 40 MHz. The signal from the detector was amplified and downconverted to intermediate frequency centered at 1 MHz after mixing process. The voltage output that was proportional to the velocity of the moving surface was obtained using PLL. With the same method, the fringe pattern signal of the moving surface is obtained. This fringe pattern signal is converted to TTL signal with ZCD(zero-crossing detector) and then counted to calculate the displacement due to the vibration, which is displayed with LCD. This LDV can be used to measure the resonant frequency of the electric equipments such as circuit breakers and transformers, of which resonant frequencies are changed when they are damaged.

  • PDF

CFD-FSI simulation of vortex-induced vibrations of a circular cylinder with low mass-damping

  • Borna, Amir;Habashi, Wagdi G.;McClure, Ghyslaine;Nadarajah, Siva K.
    • Wind and Structures
    • /
    • 제16권5호
    • /
    • pp.411-431
    • /
    • 2013
  • A computational study of vortex-induced transverse vibrations of a cylinder with low mass-damping is presented. An Arbitrary Lagrangian-Eulerian (ALE) formulation of the Unsteady Reynolds-Averaged Navier-Stokes equations (URANS), along with the Spalart-Allmaras (SA) one-equation turbulence model, are coupled conservatively with rigid body motion equations of the cylinder mounted on elastic supports in order to study the amplitude and frequency response of a freely vibrating cylinder, its flow-induced motion, Vortex Street, near-wake flow structure, and unsteady loading in a moderate range of Reynolds numbers. The time accurate response of the cylinder from rest to its limit cycle is studied to explore the effects of Reynolds number on the start of large displacements, motion amplitude, and frequency. The computational results are compared with published physical experiments and numerical studies. The maximum amplitudes of displacements computed for various Reynolds numbers are smaller than the experimental values; however, the overall agreement of the results is quite satisfactory, and the upper branch of the limit-cycle displacement amplitude vs. reduced velocity response is captured, a feature that was missed by other studies. Vortex shedding modes, lock-in phenomena, frequency response, and phase angles are also in agreement with experiments.