• 제목/요약/키워드: vertical stiffness

검색결과 655건 처리시간 0.035초

수력 원통형 터빈 가이드 베어링의 저부하/저편심 성능향상 설계 - 패드 선단 테이퍼의 도입 (Low-Load/Low-Eccentricity Performance Improvement Designs for Hydro Power Application of Cylindrical Turbine Guide Bearings - Introduction of Pad Leading-Edge Tapers)

  • 이안성;장선용
    • Tribology and Lubricants
    • /
    • 제33권2호
    • /
    • pp.65-70
    • /
    • 2017
  • In vertical hydro/hydraulic power turbine-generator applications, traditionally, cylindrical turbine guide bearings (TGBs) are widely used to provide turbine runner shafts with smooth rotation guides and supports. All existing cylindrical TGBs with simple plain pads have drawbacks such as having no pressure generation and film stiffness at the no-load condition and in addition, at the low-load/low-eccentricity condition, having very low film stiffness values and lacking design credibility in the stiffness values themselves. In this paper, in order to fundamentally improve the low-load/low-eccentricity performance of conventional cylindrical TGBs and thus enhance their design-application availability and usefulness, we propose to introduce a rotation-directional leading-edge taper to each partitioned pad, i.e., a pad leading-edge taper. We perform a design analysis of lubrication performance on $4-Pad{\times}4-Row$ cylindrical TGBs to verify an engineering/technical usefulness of the proposed pad leading-edge taper. Analysis results show that by introducing the leading-edge taper to each pad of the cylindrical TGB one can expect a constant high average direct stiffness with a high degree of design credibility, regardless of load value, even at the low-load/low-eccentricity condition and also control the average direct stiffness value by exploring the taper height as a design parameter. Therefore, we conclude that the proposed pad leading-edge tapers are greatly effective in more accurately predicting and controlling rotordynamic characteristics of vertical hydro-power turbine-generator rotor-bearing systems to which cylindrical TGBs are applied.

고속철도 콘크리트궤도 체결구 최적 수직강성 (Optimal Vertical Stiffness of Fastener of Concrete Track in High-Speed Railway)

  • 양신추
    • 한국철도학회논문집
    • /
    • 제18권1호
    • /
    • pp.43-52
    • /
    • 2015
  • 궤도의 유지보수비와 전력소모비의 합이 최소로 되는 최적 체결구의 강성을 평가하여 가급적 이 값을 갖도록 체결구를 제작 및 유지관리하는 것은 국내 콘크리트궤도의 부설이 급격하게 증가하는 시점에서 철도의 경제성 제고 차원에서 중요한 과제라 할 수 있다. 본 연구에서는 콘크리트궤도에서 궤도의 유지보수비와 차량운행에 따른 전력소모비의 합을 최소로 하는 최적 체결구 강성을 평가하는 방법을 제시한 후, 국내 고속철도 콘크리트궤도에 맞는 최적 체결구 강성을 평가하였다. 체결구 강성에 따른 궤도 유지보수비를 합리적으로 평가하기 위하여 콘크리트궤도에 적합한 체결구 강성에 따른 궤도손상모델을 제시하였으며, 궤도손상에 따른 궤도 유지보수비 상관관계를 도출하였다. 윤중 계산 시 고도화된 수치해석적 기법을 적용하여 각 궤도구성품의 거동특성이 반영될 수 있도록 함으로써 체결구 강성에 따른 윤중변동을 보다 정확하게 평가할 수 있도록 하였다.

지진응답 해석을 위한 적층식 석탑의 개별요소 모델링 (Distinct Element Modelling of Stacked Stone Pagoda for Seismic Response Analysis)

  • 김병화;이도형
    • 한국지진공학회논문집
    • /
    • 제22권6호
    • /
    • pp.345-352
    • /
    • 2018
  • It is inevitable to use the distinct element method in the analysis of structural dynamics for stacked stone pagoda system. However, the experimental verification of analytical results produced by the discrete element method is not sufficient yet, and the theory of distinct element method is not universal in Korea. This study introduces how to model the stacked stone pagoda system using the distinct element method, and draws some considerations in the seismic analysis procedures. First, the rocking mode and sliding mode are locally mixed in the seismic responses. Second, the vertical stiffness and the horizontal stiffness on the friction surface have the greatest influence on the seismic behavior. Third, the complete seismic analysis of stacked stone pagoda system requires a set of the horizontal, vertical, and rotational velocity time histories of the ground. However, earthquake data monitored in Korea are limited to acceleration and velocity signals in some areas.

타이어 압력 변화에 따른 1/4 MR 댐퍼 차량의 승차감 고찰 (Ride Comfort Investigation of 1/4 MR Damper Vehicle under Different Tire Pressure)

  • 맹영준;성민상;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.343-348
    • /
    • 2011
  • This paper presents ride comfort characteristics of a quarter-vehicle magneto-rheological (MR) suspension system with respect to different tire pressure. As a first step, controllable MR damper is designed and modeled based on both the optimized damping force levels and mechanical dimensions required for a commercial full-size passenger vehicle. Then, a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the MR damper is constructed. After deriving the equations of the motion for the proposed quarter-vehicle MR suspension system, vertical tire stiffness with respect to different tire pressure is experimentally identified. The skyhook controller is then implemented for the realization of the quarter-vehicle MR suspension system. Finally, the ride comfort analysis with respect to different tire pressure is undertaken in time domain. In addition, a comparative result between controlled and uncontrolled is provided by presenting vertical RMS displacement.

  • PDF

축소규모 고감쇠 및 납삽입형 면진베어링에 대한 특성시험고찰 (Characteristic Tests of Reduced-Scale High Damping and Lead Rubber Bearings)

  • 유봉;이재한;구경회
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.175-182
    • /
    • 1997
  • The characteristic tests of reduced-scale high damping and lead rubber bearings are performed by changing the shear displacements and the vertical loads. The test frequency is 0.5Hz. Test results show that the shear stiffnesses obtained for both bearings are less than target values, but the damping values are greater than the targets. The shear stiffness and damping of lead are larger than those of high damping bearings. The shear-deformation characteristic values such as stiffness, damping and yield load values are changed according to the level of design vertical loads.

  • PDF

자동차 클러치 페달 암의 무게 최소화를 위한 형상 최적설계 (Shape Optimal Design to Minimize the Weight of the Pedal Arm of an Automotive Clutch)

  • 이부윤;이현우
    • 대한기계학회논문집A
    • /
    • 제31권2호
    • /
    • pp.269-276
    • /
    • 2007
  • Optimal thickness and shape of the pedal arm of an automotive clutch is determined, using the numerical optimization technique, by solving the size and shape optimization problems to minimize its weight. For the optimization problems, two cases of stress and displacement constraints are considered: one from the vertical, and the other from the transverse stiffness test condition. The result of the transverse case is shown to be more conservative than that from the vertical case, being determined as the final optimum.

수직펌프의 진동 연구 (A Study on Vibration of Vertical Pump)

  • 김연환;김희수;이준신;배용채;이현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.58-63
    • /
    • 1997
  • The natural frequencies of the support system for a vertical pump, which are a key factor affecting the dynamic stability of the pump support system, are not easily predictable with analytical approaches only, due to the difficulties estimating the effective stiffness of the connections between the concrete base, the motor structure, the discharge elbow and the suction column of the pump system. This paper presents the results of a finite element analysis and an experimental study performed to identify and modify the characteristics of the pumping structure. The difficulties of modelling the effective stiffness were overcome by utilizing experimental results in the analysis. Based on analytical and experimental results, appropriate structural modifications are taken to reduce excessive vibration of the pump system to a satisfactory level.

  • PDF

수직운동하는 지지대 상에서 직진운동하는 보의 진동해석 (Vibration Analysis of a Beam Translating over Supports in Vertical Motion)

  • 정찬교;김창부
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.189-196
    • /
    • 1996
  • Vibration of a beam translating over supports in vertical motion is investigated in this paper. Equations of motion are formulated using the virtual work principle by regarding the supports as kinematical constraints imposed on an unrestrained beam and by discretizing the beam via the assumed mode method. Differential-algebraic equations of motion are derived and reduced to differential equations in independent generalized coordinates by the generalized coordinate partitioning method. Geometric stiffness of the beam due to translating motion is considered and how the geometric stiffness of beam affects dynamic stability is also investigated. Instability of the beam. in various conditions is also investigated using Floquet theory and then the results are verified through the dynamic response analysis. Results of numerical simulation are presented for various prescribed motions of the beam.

  • PDF

Study on midtower longitudinal stiffness of three-tower four-span suspension bridges with steel truss girders

  • Cheng, Jin;Xu, Hang;Xu, Mingsai
    • Structural Engineering and Mechanics
    • /
    • 제73권6호
    • /
    • pp.641-649
    • /
    • 2020
  • The determination of midtower longitudinal stiffness has become an essential component in the preliminary design of multi-tower suspension bridges. For a specific multi-tower suspension bridge, the midtower longitudinal stiffness must be controlled within a certain range to meet the requirements of sliding resistance coefficient and deflection-to-span ratio. This study presents a numerical method to divide different types of midtower and determine rational range of longitudinal stiffness for rigid midtower. In this method, influence curves of midtower longitudinal stiffness on sliding resistance coefficient and maximum vertical deflection-to-span ratio are first obtained from the finite element analysis. Then, different types of midtower are divided based on the regression analysis of influence curves. Finally, rational range for longitudinal stiffness of rigid midtower is derived. The Oujiang River North Estuary Bridge which is a three-tower four-span suspension bridge with two main spans of 800m under construction in China is selected as the subject of this study. This will be the first three-tower four-span suspension bridge with steel truss girders and concrete midtower in the world. The proposed method provides an effective and feasible tool for engineers to design midtower of multi-tower suspension bridges.

근사모델을 이용한 의 구조최적설계 (Structural Optimization of an LMU Using Approximate Model)

  • 한동섭;장시환;박순형;이권희
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.75-82
    • /
    • 2018
  • This study suggests an optimal design process of an LMU, which is installed on the top side of offshore structures. The LMU is consist of EB(elastomeric bearing) and steel plate, and supports the vertical loads of offshore structures and assists its stable installation. The structural design requirement of the LMU is related to its stiffness. This study utilizes the finite element analysis to predict the stiffness. The stiffness of the EB depends on the size of the bearing. Thus, the design variables in this study are defined as the thickness, the width and the number of plates. Since the LMU has different loads for different locations, its stiffness should be designed differently. The multiobjective function is introduced to attain the target stiffness. In this process, the metamodel using the kriging interpolation method is adopted to replace the true stiffness.