• Title/Summary/Keyword: vertical motion

Search Result 1,140, Processing Time 0.022 seconds

Shaking table tests on the seismic response of slopes to near-fault ground motion

  • Zhu, Chongqiang;Cheng, Hualin;Bao, Yangjuan;Chen, Zhiyi;Huang, Yu
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.133-143
    • /
    • 2022
  • The catastrophic earthquake-induced failure of slopes concentrically distributed at near-fault area, which indicated the special features of near-fault ground motions, i.e. horizontal pulse-like motion and large vertical component, should have great effect on these geo-disasters. We performed shaking table tests to investigate the effect of both horizontal pulse-like motion and vertical component on dynamic response of slope. Both unidirectional (i.e., horizontal or vertical motions) and bidirectional (i.e., horizontal and vertical components) motions are applied to soft rock slope model, and acceleration at different locations is reordered. The results show that the horizontal acceleration amplification factor (AAF) increases with height. Moreover, the horizontal AAF under unidirectional horizontal pulse-like excitations is larger than that subject to ordinary motion. The vertical AAF does not show an elevation amplification effect. The seismic response of slope under different bidirectional excitations is also different: (1) The horizontal AAF is roughly constant under horizontal pulse-like excitations with and without vertical waves, but (2) the horizontal AAF under ordinary bidirectional ground motions is larger than that under unidirectional ordinary motion. Above phenomena indicate that vertical component has limited effect on seismic response when the horizontal component is pulse-like ground motion, but it can greatly enhance seismic response of slope under ordinary horizontal motion. Moreover, the vertical AAF is enhanced by horizontal motion in both horizontal pulse-like and ordinary motion. Thence, we should pay enough attention to vertical ground motion, especially its horizontal component is ordinary ground motion.

The effects of vertical earthquake motion on an R/C structure

  • Bas, Selcuk;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.719-737
    • /
    • 2016
  • The present study investigated the earthquake behavior of R/C structures considering the vertical earthquake motion with the help of a comparative study. For this aim, the linear time-history analyses of a high-rise R/C structure designed according to TSC-2007 requirements were conducted including and excluding the vertical earthquake motion. Earthquake records used in the analyses were selected based on the ratio of vertical peak acceleration to horizontal peak acceleration (V/H). The frequency-domain analyses of the earthquake records were also performed to compare the dominant frequency of the records with that of the structure. Based on the results obtained from the time-history analyses under the earthquake loading with (H+V) and without the vertical earthquake motion (H), the value of the overturning moment and the top-story vertical displacement were found to relatively increase when considering the vertical earthquake motion. The base shear force was also affected by this motion; however, its increase was lower compared to the overturning moment and the top-story vertical displacement. The other two parameters, the top-story lateral displacement and the top-story rotation angle, barely changed under H and H+V loading cases. Modal damping ratios and their variations in horizontal and vertical directions were also estimated using response acceleration records. No significant change in the horizontal damping ratio was observed whereas the vertical modal damping ratio noticeably increased under H+V loading. The results obtained from this study indicate that the desired structural earthquake performance cannot be provided under H+V loading due to the excessive increase in the overturning moment, and that the vertical damping ratio should be estimated considering the vertical earthquake motion.

Seismic performance of R/C structures under vertical ground motion

  • Bas, Selcuk;Lee, Jong-Han;Sevinc, Mukadder;Kalkan, Ilker
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.369-380
    • /
    • 2017
  • The effects of the vertical component of a ground motion on the earthquake performances of semi-ductile high-rise R/C structures were investigated in the present study. Linear and non-linear time-history analyses were conducted on an existing in-service R/C building for the loading scenarios including and excluding the vertical component of the ground motion. The ratio of the vertical peak acceleration to the horizontal peak acceleration (V/H) of the ground motion was adopted as the main parameter of the study. Three different near-source earthquake records with varying V/H ratio were used in the analyses. The linear time-history analyses indicated that the incorporation of the vertical component of a ground motion into analyses greatly influences the vertical deflections of a structure and the overturning moments at its base. The lateral deflections, the angles of rotation and the base shear forces were influenced to a lesser extent. Considering the key indicators of vertical deflection and overturning moments determined from the linear time-history analysis, the non-linear analyses revealed that the changes in the forces and deformations of the structure with the inclusion of the vertical ground motion are resisted by the shear-walls. The performances and damage states of the beams were not affected by the vertical ground motion. The vertical ground motion component of earthquakes is markedly concluded to be considered for design and damage estimation of the vertical load-bearing elements of the shear-walls and columns.

A Study on the Change of Waist Pattern by Upper Limb Motion -By the Method of Tight Fitting Technique- (상지동작에 따른 길의 변화에 관한 연구 -입체재단법을 중심으로-)

  • 이은정;박정순
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.1
    • /
    • pp.113-127
    • /
    • 1996
  • In this study, the pattern was copied by the method of Tight Fitting Techinque, which resulted from the changed body by the upper limb motion-front-vertical motion(or vertical motion in front), side-vertical motion, and horizontal motion. And, this study analyzed the change of the pattern and the observed items dimension changed to the pattern. The results are as follows: 1. In the observation of the degree of the pattern change according to the motion of upper limb, the result provides that the motion change in the range of $135^{\circ}$ to $180^{\circ}$ is the largest in front-vertical motion, $45^{circ}~90^{\circ}$ in side-vertical motion, and $0^{circ}~45^{\circ}$ in horizontal motion respectively. 2. The probability test result of the items of the motion is more related with the horizontal width item rather than the vertical length item in the front and back pattern where the back pattern has more effect than the front pattern. And the upper limb-surrounding items are more related than any otheer item. 3. The change of the pattern according to the motion shows the decrese of the neck width and the shoulder legth, the rising of the point of shoulder (or shoulder point) and armpit point, the decrease of the pattern width and the increase of the pattern length. As the angle of the motion grows vertically motion. The change of the shoulder length in the horizontal motion is smaller than that vertical. But as the angle of the motion grows horizontally, it has a tendency of decreas in th width of the front patten and the length of the pattern, whereas the width of the back pattern is noticeably increases.

  • PDF

Useful Image Back-projection Properties in Cameras under Planar and Vertical Motion (평면 및 수직 운동하는 카메라에서 유용한 영상 역투영 속성들)

  • Kim, Minhwan;Byun, Sungmin
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.7
    • /
    • pp.912-921
    • /
    • 2022
  • Autonomous vehicles equipped with cameras, such as robots, fork lifts, or cars, can be found frequently in industry sites or usual life. Those cameras show planar motion because the vehicles usually move on a plane. Sometimes the cameras in fork lifts moves vertically. The cameras under planar and vertical motion provides useful properties for horizontal or vertical lines that can be found easily and frequently in our daily life. In this paper, some useful back-projection properties are suggested, which can be applied to horizontal or vertical line images captured by a camera under planar and vertical motion. The line images are back-projected onto a virtual plane that is parallel to the planar motion plane and has the same orientation at the camera coordinate system regardless of camera motion. The back-projected lines on the virtual plane provide useful information for the world lines corresponding to the back-projected lines, such as line direction, angle between two horizontal lines, length ratio of two horizontal lines, and vertical line direction. Through experiments with simple plane polygons, we found that the back-projection properties were useful for estimating correctly the direction and the angle for horizontal and vertical lines.

Vertical seismic response analysis of straight girder bridges considering effects of support structures

  • Wang, Tong;Li, Hongjing;Ge, Yaojun
    • Earthquakes and Structures
    • /
    • v.8 no.6
    • /
    • pp.1481-1497
    • /
    • 2015
  • Vertical earthquake ground motion may magnify vertical dynamic responses of structures, and thus cause serious damage to bridges. As main support structures, piers and bearings play an important role in vertical seismic response analysis of girder bridges. In this study, the pier and bearing are simplified as a vertical series spring system without mass. Then, based on the assumption of small displacement, the equation of motion governing the simply-supported straight girder bridge under vertical ground motion is established including effects of vertical deformation of support structures. Considering boundary conditions, the differential quadrature method (DQM) is applied to discretize the above equation of motion into a MDOF (multi-degree-of-freedom) system. Then seismic responses of this MDOF system are calculated by a step-by-step integration method. Effects of support structures on vertical dynamic responses of girder bridges are studied under different vertical strong earthquake motions. Results indicate that support structures may remarkably increase or decrease vertical seismic responses of girder bridges. So it is of great importance to consider effects of support structures in structural seismic design of girder bridges in near-fault region. Finally, optimization of support structures to resist vertical strong earthquake motions is discussed.

Effects of Vertical Ground Motion on Rocking Response of Free Standing Structure (연직지반운동이 자립형 구조체의 Rocking 거동에 미치는 영향)

  • 최인길;전영선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.169-176
    • /
    • 1997
  • In this study, vertical ground motion effects on rocking response of free standing structure are investigated. Based on the mathematical model, computer program is developed using Kutta's Fourth-Order Method. Using the program, several parametric studis are performed to predict the effects of vertical ground motion. From the results of this study, it can be found that the vertical ground motion may overturn the structure which is stable under the horizontal ground motion, stabilize the structure which overturns due to horizontal ground motion alone, and delay the time of overturning of the structure or greatly reduce the rocking of the structure. It is concluded that the effect of vertical ground motion on the rocking response of free standing structure is apparently not systematic.

  • PDF

Study on the Disturbance Applied to Launcher Hatch by Ship Motions (함정운동에 의해 발사대 해치에 작용하는 외란에 관한 연구)

  • Byun, Young-Chul;Kang, E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.12
    • /
    • pp.1111-1118
    • /
    • 2013
  • In this paper, the disturbance applied to launcher hatch by ship motions is introduced to identify the vertical ship motion disturbance. Basically, ship motions are comprised of 6 degrees of freedom: roll, pitch, yaw, heave, surge and sway. In the case of the shipboard launcher hatch the coupled pitch, heave and roll are significant motions to be transformed to a vertical direction motion. The maximum acceleration values are obtained from the vertical motion model and the ship motion data in accordance with ship type and hatch location on the ship. We verify that the maximum pitch motion mainly influences the launcher hatch and also present the quantity of the maximum load disturbance by the ship's motion acceleration.

A Study on Decrease of Vertical Accelerations due to Changes in Location of the Habitation Division for Training Ship (실습선의 거주위치 변경에 따른 수직가속도 저감에 관한 연구)

  • HAN, Seung-Jae;HA, Young-Rok;LEE, Seung-Chul;JEONG, Tae-Yeong;KIM, In-Chul
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.28 no.1
    • /
    • pp.14-21
    • /
    • 2016
  • Research on ship motion and seasickness is recognized as the important research area to ensure the pleasant operative environment in addition to the research of operation safety of ship. In this paper, the motion performance in waves for the training ship Kaya of Pukyong National University is obtained by using the computer program based on Strip Method. To guarantee the pleasant seafaring in ocean, the vertical acceleration of ship motion is calculated according to the habitation division location in the ship. The results of calculation by changes of location of habitation division are compared with the guideline of MSI(Motion Sickness Incidence). The degree of motion sickness is shown and discussed through the comparison between calculated vertical acceleration spectrum and MSI guideline. To improve the safety of ship in motion and the pleasant seafaring in waves, the downtrend of seasickness ratio is needed by the decrease on vertical acceleration of the ship. Through the results in this paper, the relocation of both bridge and accommodation toward the aftship reduced the vertical acceleration and MSI.

Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions (수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석)

  • Park, Jang-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.3 s.67
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.