• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.024 seconds

Static and Dynamic Analysis of Reinforced Concrete Axisymmetric Shell on the Elastic Foundation -Effect of Steel on the Dynamic Response- (탄성지반상에 놓인 철근 콘크리트 축대칭 쉘의 정적 및 동적 해석(IV) -축대칭 쉘의 동적 응답에 대한 철근의 영향을 중심으로-)

  • 조진구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.4
    • /
    • pp.106-113
    • /
    • 1997
  • Dynamic loading of structures often causes excursions of stresses well into the inelastic range, and the influence of the geometric changes on the dynamic response is also significant in many cases. Therefore, both material and geometric nonlinearity effects should be considered in case that a dynamic load acts on the structure. A structure in a nuclear power plant is a structure of importance which puts emphasis on safety. A nuclear container is a pressure vessel subject to internal pressure and this structure is constructed by a reinforced concrete or a pre-stressed concrete. In this study, the material nonlinearity effect on the dynamic response is formulated by the elasto-viscoplastic model highly corresponding to the real behavior of the material. Also, the geometrically nonlinear behavior is taken into account using a total Lagrangian coordinate system, and the equilibrium equation of motion is numerically solved by a central difference scheme. The constitutive relation of concrete is modeled according to a Drucker-Prager yield criterion in compression. The reinforcing bars are modeled by a smeared layer at the location of reinforcements, and the steel layer model under Von Mises yield criteria is adopted to represent an elastic-plastic behavior. To investigate the dynamic response of a nuclear reinforced concrete containment structure, the steel-ratios of 0, 3, 5 and 10 percent, are considered. The results obtained from the analysis of an example were summarized as follows 1. As the steel-ratio increases, the amplitude and the period of the vertical displacements in apex of dome decreased. The Dynamic Magnification Factor(DMF) was some larger than that of the structure without steel. However, the regular trend was not found in the values of DMF. 2. The dynamic response of the vertical displacement and the radial displacement in the dome-wall junction were shown that the period of displacement in initial step decreased with the steel-ratio increases. Especially, the effect of the steel on the dynamic response of radial displacement disapeared almost. The values of DMF were 1.94, 2.5, 2.62 and 2.66, and the values increased with the steel-ratio. 3. The characteristics of the dynamic response of radial displacement in the mid-wall were similar to that of dome-wall junction. The values of DMF were 1.91, 2.11, 2.13 and 2.18, and the values increased with the steel-ratio. 4. The amplitude and the period of the hoop-stresses in the dome, the dome-wall junction, and the mid-wall were shown the decreased trend with the steel-ratio. The values of DMF were some larger than those of the structure without steel. However, the regular trend was not found in the values of DMF.

  • PDF

Integrated Eco-Engineering Design for Sustainable Management of Fecal Sludge and Domestic Wastewater

  • Koottatep, Thammarat;Polprasert, Chongrak;Laugesen, Carsten H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.69-78
    • /
    • 2007
  • Constructed wetlands and other aquatic systems have been successfully used for waste and wastewater treatment in either temperate or tropical regions. To treat waste or wastewater in a sustainable manner, the integrated eco-engineering designs are explained in this paper with 2 case studies: (i) a combination of vertical-flow constructed wetland (CW) with plant irrigation systemfor fecal sludge management and (ii) integrated CW units with landscaping at full-scale application for domestic wastewater treatment. The pilot-scale study of fecal sludge management employed 3 vertical-flow CW units, each with a dimension of $5{\times}5{\times}0.65m$ (width ${\times}$ length ${\times}$ media depth) and planted with cattails (Typha augustifolia). At the solid loading rate of 250 kg total solids (TS)/$m^2.yr$ and a 6-day percolate impoundment, the CW system could achieve chemical oxygen demand (COD), TS and total Kjeldahl nitrogen (TKN) removal efficiencies in the range of 80 - 96%. The accumulated sludge layers of about 80 - 90 cm was found at the CW bed surface after operating the CW units for 7 years, but no clogging problem has been observed. The CW percolate was applied to 16 irrigation Sunflower plant (Helianthus annuus) plots, each with a dimension of $4.5{\times}4.5m$ ($width{\times}length$). In the study, the CW percolate were fed to the treatment plots at the application rate of 7.5 mm/day but the percolate was mixed with tap water at different ratio of 20%, 80% and 100%. Based on a 1-year data of 3-crop plantation were experimented, the contents of Zn, Mn and Cu in soil of the experimental plots were found to increase with increasing in CW percolate ratios. The highest plant biomass yield and oil content of 1,000 kg/ha and 35%, respectively, were obtained from the plots fed with 20% or 50% of the CW percolate, whereas no accumulation of heavy metals in the plant tissues (i.e. leaves, stems and flowers) of the sunflower is found. In addition to the pilot-scale and field experiments, a case study of the integrated CW systems for wastewater treatment at Phi Phi Island (a Tsunami-hit area), Krabi province, Thailand is illustrated. The $5,200-m^2$ CW systems on Phi Phi Island are not only for treatment of $400m^3/day$ wastewater from hotels, households or other domestic activities, but also incorporating public consultation in the design processes, resulting in introducing the aesthetic landscaping as well as reusing of the treated effluent for irrigating green areas on the Island.

  • PDF

Three-dimensional finite element analysis according to the insertion depth of an immediately loaded implant in the anterior maxilla (상악 전치부 즉시하중 임플란트의 식립 깊이에 따른 삼차원 유한요소 분석)

  • Park, Cheol-Woo;Kim, Sung-Hun;Yeo, In-Sung;Yoon, Hyung-In;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • Purpose: The purpose of this study was to investigate the effects of the insertion depth of an immediately loaded implant on the stress distribution of the surrounding bone and the micromovement of the implant using the three-dimensional finite element analysis. Materials and methods: A total of five bone models were constructed such that the implant platform was positioned at the levels of 0.00 mm, 0.25 mm, 0.50 mm, 0.75 mm, and 1.00 mm depth from the crest of the cortical bone. A frictional coefficient of 0.3 and the insertion torque of 35 Ncm were simulated on the interface between the implant and surrounding bone. A static load of 178 N was applied to the provisional prosthesis with a vertical load in the axial direction and an oblique load at $30^{\circ}$ with respect to the central axis of the implant, then a finite element analysis was performed. Results: The implant insertion depth significantly affected the stress distribution on the surrounding bone. The largest micromovement value of the implant was $39.34{\mu}m$. The oblique load contributed significantly to the stress distribution and micromovement in comparison to the vertical load. Conclusion: Increasing the implant insertion depth was advantageous in dispersing the concentrated stress in the cortical bone and did not significantly affect the micromovement associated with early osseointegration failure.

Effects of Visual Information Blockage on Landing Strategy during Drop Landing (시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향)

  • Koh, Young-Chul;Cho, Joon-Haeng;Moon, Gon-Sung;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.

Vertical Vibration of Rigid Circular Footings on Sand (사질토(砂質土) 위에 놓인 강성(剛性) 원형기초(圓形基礎)의 수직진동(垂直振動))

  • Kim, Soo Il;Min, Tuk Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.3
    • /
    • pp.127-136
    • /
    • 1985
  • A simplified single degree of freedom analog with mass-spring-dashpot is proposed in this study. The simplified analog can describe the dynamic behavior of a rigid circular footings whose contact pressures are parabolic. The analog proposed in this study shows remarkable agreement when compared with the elastic half-space theory the analog is also compared with vertical vibration test results of model concrete footings. For the vibration experiments, 11 circular footings with different mass ratio are constructed. The elastic half-space is represented by compacted sand layer. A constant force excitation vibrator is used for the dynamic loading. The frequency range for vibration tests is 30 to 100 Hz. From the dynamic experiments, it is found that the measured resonant frequencies agree very well with the analog results, however, the ratio of theoretical and measured resonant amplitudes vary between 0.5 and 1.7. It is also found that, when the dynamic force is increased, the resonant frequency is decreased slightly and the resonant amplitude is increased slightly.

  • PDF

A STUDY ON TOOTH FRACTURE WITH THREE DIMENSIONAL FINITE ELEMENT METHOD (치아파절에 관한 3차원유한요소법적 연구)

  • Cho, Byeong-Hoon;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.18 no.2
    • /
    • pp.291-316
    • /
    • 1993
  • Restorative procedures can lead to tooth fracture due to the relatively small amount of the remaining tooth structure. It is essential to prevent fractures by having a clear concept of the designs for cavity preparations. Among the several parameters in cavity designs, profound understanding of isthmus width factor would facilitate selection of the appropriate cavity preparation for a specific clinical situation. In this study, MO amalgam cavity were prepared on maxillary first premolar and filled with amalgam. Three dimensional, model with 1365 8-node brick elements was made by serial photographic method. In this model, isthmus was varied in width at 1/4, 1/3, 1/2 and 2/3 of intercuspal width and material properties were given for three element groups, i.e., enamel, dentin and amalgam. A load of 500 N was applied vertically on amalgam and enamel. In case of enamel loading, 2 model (with and without amalgam) was compared to consider the possibility of play at the interface between tooth material and amalgam. These models were analyzed with three dimensional finite element method. The results were as follows: 1. The stress was concentrated on the facio-pulpal line angle and distal marginal ridge of the cavity. 2. With the increase of the isthmus width, the stress spread around the facio-pulpal line angle and the area of stress concentration moved toward the proximal box. 3. In case of narrow isthmus width, the initiation point of crack would be in the area of isthmus corner of the cavity, and with the increase of the isthmus width, it would move toward the proximal box and at the same time the possibility of crack increase at the distal marginal ridge. 4. The direction of crack progressed outward and downward from the facio-pulpal line angle, and with the increase of the isthmus width, it approximated vertical direction. At the marginal ridge, it occurred in vertical direction. 5. It would be favorable to make the isthmus width narrower than a third of the intercuspal width, and to cover the cusp if isthmus width were wider than half of the intercuspal width. 6. It is necessary to apply the possibility of play to the finite element analysis.

  • PDF

Cervical design effect of dental implant on stress distribution in crestal cortical bone studied by finite element analysis (유한요소법을 이용한 임플란트 경부 디자인이 골응력에 미치는 영향 분석)

  • Kim, Kyung-Tak;Jo, Kwang-Heon;Lee, Cheong-Hee;Yu, Won-Jae;Lee, Kyu-Bok
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.385-393
    • /
    • 2009
  • Statement of problem: High stress concentration on the crestal cortical bone has been regraded as a major etiologic factor jeopardizing long term stability of endosseous implants. Purpose: To investigate if the design characteristics of crestal module, i.e. internal type, external type, and submerged type, affect stress distribution on the crestal cortical bone. Material and methods: A cylindrical shaped implant, 4.3 mm in diameter and 10 mm in length, with 3 different crestal modules, i.e. internal type, external type, and submerged type, were analysed. An axisymmetric scheme was used for finite elment formulation. A vertical load of 50 N and an oblique load of 50N acting at $45^{\circ}$ with the implant's long axis was applied. The peak crestal bone stress acting at the intersection of implant and crestal bone was compared. Results: Under vertical load, the crestal bone stress was high in the order of internal, external, and submerged types. Under the oblique loading condition, it was in the order of internal, submerged, and external types. Conclusion: Crestal module design was found to affect the level of the crestal bone stresses although the actual amount was not significant.

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.

Development and Lab-scale Plant Study of Coagulation Sedimentation Module using Cyclone (선회류를 이용한 응집침전모듈의 개발 및 실증 연구)

  • Moon, Jinyoung;Cho, Young-Gun;Song, Seung-Jun;Kim, Jin-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3336-3344
    • /
    • 2014
  • The purpose of this study is small scale coagulation module is developed and demonstrated through a lab-scale test. Recent as a sewage treatment rate increases, have heightened the interest in the necessity on the nonpoint source and developing a small processing unit has been increased. Coagulation sedimentation module in this study is additional growth of floc through swirling in the outside zone, reduction of microstructure floc number and the internal settling zone through vertical/level flow complex sedimentation method after the coagulation process precipitation method as an effective high separation efficiency can be divided was also assessed. Coagulation sedimentation module can increase the load factor was 4.4 times compared to conventional clarifier base on the same volume and surface area through vertical/level flow. In this study, this process was selected formation and maintenance of swirling and uniform flow distribution in the internal settling zone as an important design factor, to derive its FLUENT was used to characteristics of the flow model. Through the simulation of swirling, influent velocity, dimensions of external basin, hopper depth of bottom cone was determined and through analysis of velocity distribution, flow distribution detailed specifications are derived like as diameter and number of effluent hole. Lab-scale($120{\ell}/hr$) test results, influent of 300~800 NTU to less than 10 NTU without polymer feeding was able to operate in the 20minutes retention time(surface loading rate $37.3m^3/m^2$-day), and through analysis FLUENT the possibility of using design parameters were derived.

Heat Transfer Modeling by the Contact Condition and the Hole Distance for A-KRS Vertical Disposal (A-KRS 수직 처분공 접촉 조건 및 처분공 간의 거리에 따른 열전달 해석)

  • Kim, Dae-Young;Kim, Seung-Hyun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.3
    • /
    • pp.313-319
    • /
    • 2019
  • The A-KRS (Advanced Korean Reference Disposal System) is the disposal concept for pyroprocessed waste, which has been developed by the Korea Atomic Energy Research Institute. In this disposal concept, the amount of high-level radioactive waste is minimized using pyrochemical process, called pyroprocessing. The produced pyroprocessed waste is then solidified in the form of monazite ceramic. The final product of ceramic wastes will be disposed of in a deep geological repository. By the way, the decay heat is generated due to the radioactive decay of fission products and raises the temperature of buffer materials in the near field of radioactive waste repository. However, the buffer temperature must be kept below $100^{\circ}C$ according to the safety regulation. Usually, the temperature can be controlled by variation of the canister interdistance. However, KAERI has modelled thermal analysis under the boundary condition, where the waste canisters are in direct contact with each other. Therefore, a reliable temperature analysis in the disposal system may fail because of unknown thermal resistence values caused by the spatial gap between waste canisters. In the present work, we have performed thermal analyses considering the gap between heating elements and canisters at the beginning of canister loading into the radioactive waste repository. All thermal analyses were performed using the COMSOL software package.