• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.033 seconds

Finite Element Stress Analysis of Implant Prosthesis According to Friction Fit or Slip Fit of Internal Connection System between Implant and Abutment (임플랜트와 지대주 간 내측연결 시스템에서 Friction Fit와 Slip Fit에 따른 유한요소 응력분석)

  • Jang, Doo-Ik;Jeong, Seung-Mi;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.2
    • /
    • pp.113-132
    • /
    • 2005
  • The purpose of this study was to assess the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to a friction-fit joint (Astra; Model 1) or slip- fit joint (Frialit-2; Model 2) in the internal connection system under vertical and inclined loading using finite element analysis. In conclusion, in the internal connection system of the implant and the abutment connection methods, the stress-induced pattern at the supporting bone, the implant fixture, the abutment and the abutment screw according to the abutment connection form had difference among them, and the stress distribution pattern usually had a widely distributed tendency along the inner surface of the implant fixture contacting the abutment post. The magnitude of the stress distributed in the supporting bone, the implant fixture, the abutment and the abutment screw was higher in the friction-fit joint than in the slip-fit joint. But it is considered that the further study is necessary about how this difference in the magnitude of the stress have an effect on the practical clinic.

Gender Differences of Vertical Drop Landing Strategies in College Students

  • Yi, Chung-Hwi;Park, So-Yeon;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • The kinematics involved in different landing strategies may be related to the occurrence of trauma. Several sources suggest that the angle of knee extension on touchdown and impact with the ground determines the magnitude of the impact force and, indirectly, knee loading. This study compared the initial knee angle and maximum knee flexion angle at the instant of impact on drop-landings between healthy men and women. In this study, 60 participants (30 males, 30 females) dropped from a height of 43 cm. A digital camera and video motion analysis software were used to analyze the kinematic data. When landing, there was significant difference between the two groups ($15.67{\pm}6.05^{\circ}$ in male, $24.10{\pm}6.34^{\circ}$ in female) in the mean knee flexion angle. The range of knee flexion on landing ($44.06{\pm}10.97^{\circ}$ in male, $36.96{\pm}9.99^{\circ}$ in female) also differed significantly (p<.05). The greater knee flexion that was observed in the male subjects would be expected to decrease their risk of injury. Women land with smaller range of knee flexion than men and this might increase the likelihood of a knee injury.

  • PDF

A Study on the Fire Hazard and Improvement Schemes of a Rack-type Automatic Warehouse (랙크식 자동창고의 화재위험성 및 개선방안에 대한 연구)

  • Lee, You-Sik;Ahn, Young-Chull;Nam, Yu-Jin;You, Dong-Kyun;Kwark, Ji-Hyun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.19-29
    • /
    • 2017
  • Recently, there has been increased demand for automatic warehouses with racks which are installed inside the warehouses to allow vertical loading of products or goods for space efficiency. Therefore considerations about fire hazards are extremely necessary. In this study, the fire hazard of automatic warehouse with racks was analyzed in the view of fire prevention engineering. It appeared its fire hazard was extremely high because of the undefined fire zones, the windowless floor, the large volume, the difficulty of extinguishment and the smoke emission in the view of building itself, and because of the fire hazard of load itself, the high fire load, and the chimney effect in the view of fire.

Characteristic of stress and strain of soft ground applied individual vacuum pressure (개별진공압이 적용된 연약지반의 응력과 변형 특성)

  • Ahn, Dong-Wook;Han, Sang-Jae;Kim, Byung-Il;Jung, Seung-Yong;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.467-472
    • /
    • 2010
  • Individual vacuum pressure method is soft ground improvement technique, in which a vacuum pressure can be directly applied to the vertical drain board to promote consolidation and strengthening the soft ground. This method does not require a surcharge load, different to embankment or pre-loading method. In this study, given the inner displacement of the ground where the individual vacuum pressure is applied, this dissertation aimed to reproduce the state of stress in the ground that is subject to the constraints created by the depth of improvement area. Modified Cam Clay theory which made it possible to take into account the isotropic displacement of the ground was applied to the NAP-IVP used simulation; the conception of equivalent permeability proposed by Hird was also applied so that the 3-dimensional real construction effect of drain materials could be reflected in the analysis.

  • PDF

Seabed Liquefaction with Reduction of Soil Strength due to Cyclic Wave Excitation

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This study introduces the case of pipelines installed in subsea conditions and buried offshore. Such installations generate pore water pressure under the seabed because of cyclic wave excitation, which is an environmental load, and consistent cyclic wave loading that reduce the soil shear strength of the seabed, possibly leading to liquefaction. Therefore, in view of the liquefaction of the seabed, stability of the subsea pipelines should be examined via calculations using a simple method for buried subsea pipelines and floating structures. Particularly, for studying the possible liquefaction of the seabed in regard to subsea pipelines, high waves of a 10- and 100-year period and the number of occurrences that are affected by the environment within a division cycle of 90 s should be applied. However, when applying significant wave heights (HS), the number of occurrences within a division cycle of 3 h are required to be considered. Furthermore, to research whether dynamic vertical load affect the seabed, mostly a linear wave is used; this is particularly necessary to apply for considering the liquefaction of the seabed in the case of pile structure or subsea pipeline installation.

Inter-comparison of NO2 column densities measured by Pandora and OMI over Seoul, Korea

  • Yun, Seoyeon;Lee, Hanlim;Kim, Jhoon;Jeong, Ukkyo;Park, Sang Seo;Herman, Jay
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.663-670
    • /
    • 2013
  • Total Vertical Column Density (VCD) of $NO_2$, a key component in air quality and tropospheric chemistry was measured using a ground-based instrument, Pandora, in Seoul from March 2012 to October 2013. The $NO_2$ measurements using Pandora were compared with those obtained by satellite remote sensing from Ozone Monitoring Instrument (OMI) where the intercomparison characteristics were analyzed as a function of measurement geometry, cloud amount and aerosol loading. The negative biases of the OMI $NO_2$ VCD were larger when cloud amount and Aerosol Optical Depth (AOD) were higher. The correlation coefficient between $NO_2$ VCDs from Pandora and OMI was 0.53 for the entire measurement period, whereas the correlation coefficient between the two was 0.74 when the cloud amount and AOD were low (cloud amount<3, AOD<0.4). The low bias of OMI data was associated with the shielding effect of the cloud and the aerosols.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates

  • Wang, L.;Su, R.K.L.
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.163-185
    • /
    • 2013
  • The use of post-compressed plates (PCP) to strengthen preloaded reinforced concrete (RC) columns is an innovative approach for alleviating the effects of stress-lagging between the original column and the additional steel plates. Experimental and theoretical studies on PCP-strengthened RC columns have been presented in our companion papers. The results have demonstrated the effectiveness of this technique for improving the strength, deformability and ductility of preloaded RC columns when subjected to axial or eccentric compression loading. An original and comprehensive design procedure is presented in this paper to aid engineers in designing this new type of PCP-strengthened RC column and to ensure proper strengthening details for desirable performance. The proposed design procedure consists of five parts: (1) the estimation of the ultimate load capacity of the strengthened column, (2) the design of the initial pre-camber displacement of the steel plate, (3) the design of the vertical spacing of the bolts, (4) the design of the bearing ends of the steel plates, and (5) the calculation of the tightening force of the bolts. A worked example of the design of a PCP-strengthened RC column is shown to demonstrate the application of the proposed design procedure.

Optimal design of spoke double-layer cable-net structures based on an energy principle

  • Ding, Mingmin;Luo, Bin;Han, Lifeng;Shi, Qianhao;Guo, Zhengxing
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.533-545
    • /
    • 2020
  • An optimal design method for a spoke double-layer cable-net structure (SDLC) is proposed in this study. Simplified calculation models of the SDLC are put forward to reveal the static responses under vertical loads and wind loads. Next, based on an energy principle, the relationship among the initial prestress level, cross-sectional areas of the components, rise height, sag height, overall displacement, and relative deformation is proposed. Moreover, a calculation model of the Foshan Center SDLC is built and optimized. Given the limited loading cases, material properties of the components, and variation ranges of the rise height and sag height, the self-weight and initial prestress level of the entire structure can be obtained. Because the self-weight of the cables decreases with increasing of the rise height and sag height, while the self-weight of the inner strut increases, the total weight of the entire structure successively exhibits a sharp reduction, a gradual decrease, a slow increase, and a sharp increase during the optimization process. For the simplified model, the optimal design corresponds to the combination of rise height and sag height that results in an appropriate prestress level of the entire structure with the minimum total weight.

Innovative approach to determine the minimum wall thickness of flexible buried pipes

  • Alzabeebee, Saif;Chapman, David N.;Faramarzi, Asaad
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.755-767
    • /
    • 2018
  • This paper uses a finite element based approach to provide a comprehensive understanding to the behaviour and the design performance of buried uPVC pipes with different diameters. It also investigates pipes with good and poor haunch support and proposes minimum safe wall thicknesses for these pipes. The results for pipes with good haunch support showed that the maximum pipe wall stress and deformation increase as the diameter increased. The results for pipes with poor haunch support showed an increase in the dependency of the developed vertical displacement on the haunch support as the diameter or the backfill height increased. Additionally, poor haunch support was found to increase the soil pressure, with the effect increasing as the diameter increased. The design of uPVC pipes for both poor and good haunch support was found to be governed by critical buckling. A key outcome is a new design chart for the minimum wall thickness, which enables the robust and economic design of buried uPVC pipes. Importantly, the methodology adopted in this study can also be applied to the design of flexible pipes manufactured from other materials, buried under different conditions and subjected to different loading arrangements.