• 제목/요약/키워드: vertical loading

Search Result 792, Processing Time 0.024 seconds

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Nonlinear response of stiffened triceratops under impact and non-impact waves

  • Chandrasekaran, Srinivasan;Nassery, Jamshed
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.179-193
    • /
    • 2017
  • Dynamic response analysis of offshore triceratops with stiffened buoyant legs under impact and non-impact waves is presented. Triceratops is relatively new-generation complaint platform being explored in the recent past for its suitability in ultra-deep waters. Buoyant legs support the deck through ball joints, which partially isolate the deck by not transferring rotation from legs to the deck. Buoyant legs are interconnected using equally spaced stiffeners, inducing more integral action in dispersing the encountered wave loads. Two typical nonlinear waves under very high sea state are used to simulate impact and non-impact waves. Parameters of JONSWAP spectrum are chosen to produce waves with high vertical and horizontal asymmetries. Impact waves are simulated by steep, front asymmetric waves while non-impact waves are simulated using Stokes nonlinear irregular waves. Based on the numerical analyses presented, it is seen that the platform experiences both steady state (springing) and transient response (ringing) of high amplitudes. Response of the deck shows significant reduction in rotational degrees-of-freedom due to isolation offered by ball joints. Weak-asymmetric waves, resulting in non-impact waves cause steady state response. Beat phenomenon is noticed in almost all degrees-of-freedom but values in sway, roll and yaw are considerably low as angle of incidence is zero degrees. Impact waves cause response in higher frequencies; bursting nature of pitch response is a clear manifestation of the effect of impact waves on buoyant legs. Non-impact waves cause response similar to that of a beating phenomenon in all active degrees-of-freedom, which otherwise would not be present under normal loading. Power spectral density plots show energy content of response for a wide bandwidth of frequencies, indicating an alarming behaviour apart from being highly nonlinear. Heave, being one of the stiff degrees-of-freedom is triggered under non-impact waves, which resulted in tether tension variation under non-impact waves as well. Reduced deck response aids functional requirements of triceratops even under impact and non-impact waves. Stiffened group of buoyant legs enable a monolithic behaviour, enhancing stiffness in vertical plane.

Investigation of pipe shear connectors using push out test

  • Nasrollahi, Saeed;Maleki, Shervin;Shariati, Mahdi;Marto, Aminaton;Khorami, Majid
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.537-543
    • /
    • 2018
  • Mechanical shear connectors are commonly used to transfer longitudinal shear forces across the steel-concrete interface in composite beams. Steel pipe as a new shear connector is proposed in this research and its performance to achieve composite strength is investigated. Experimental monotonic push-out tests were carried out for this connector. Then, a nonlinear finite element model of the push-out specimens is developed and verified against test results. Further, the finite element model is used to investigate the effects of pipe thickness, length and diameter on the shear strength of the connectors. The ultimate strengths of these connectors are reported and their respective failure modes are discussed. This paper comprises of the push-out tests of ten specimens on this shear connector in both the vertical and horizontal positions in different reinforced concretes. The results of experimental tests are given as load-deformation plots. It is concluded that the use of these connectors is very effective and economical in the medium shear demand range of 150-350 KN. The dominant failure modes observed were either failure of concrete block (crushing and splitting) or shear failure of pipe connector. It is shown that the horizontal pipe is not as effective as vertical pipe shear connector and is not recommended for practical use. It is shown that pipe connectors are more effective in transferring shear forces than channel and stud connectors. Moreover, based on the parametric study, a formula is presented to predict the pipe shear connectors' capacity.

An Analysis on Stress Distribution within Soft Layer Subject to Embomkment Loading (유안요소법에 의한 식중응력의 해석)

  • Park, Byeong-Gi;Lee, Mun-Su;Lee, Jin-Su
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-84
    • /
    • 1985
  • This Paper aims at investigating the distribution of stresses and the displacement of soft foundation layer subject to embankment load by the finite elements method (FEM). The stresses include the volumetric stress, the Pore water Pressure, the vertical stress. The horizontal stress and the shear stress. The Christian-Boehmer's method was selected as technique for FEM and the general elasticity model and modified Cam-clay model as the governing equations under Plain-strain condition depending on drained and undrained conditions. The results obtained are as follows: 1. The volumetric stress is almost consistent with the pore water pressure. This means that the total stress is the same value with the pore water pressure under the undrined condition 2. The vertical stress appears in the same value regardless of the drained or undrained condition and the model of the constitutive equations. 3. The horizontal stress has almost same value with the drain condition model. 4. depending on the constitutive model. The shear stress is affected by both the drain condition and the constitute model. The resulted value by the modified Cam-clay model has the largest. 5. The direction of the displacement vector turns outward near the tip of load during the increasing load. 6. The magnitude of displacement due to the modified Cam.clay model is as twice large as that due to elastic model.

  • PDF

Behavior of Model Sheet Piles under Vertical Loads (수직하중을 받는 모형 강널말뚝의 거동)

  • 윤여원;김두균
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.5-16
    • /
    • 1998
  • In order to study the behavior of the sheet pile under vertical load in sands, model pile tests using calibration chamber are performed. For this research, five model piles, with the same section area and different degree of inclination of flange, were made. And model pile tests were conducted for each of these piles with different relative density and direction of applied load. For model pile which has the same shape, compression capacity is about 100% higher than pullout capacity and the difference increases with increasing relative density. Pullout ultimate capacity and corresponding displacement increase with increasing relative density and the pullout capacities remained almost the same irrespective of the inclination of flanges for the same density. The ultimate capacity under compression load is highest at 30$^{\circ}$ of inclination of flanges and the trend is more evident with increasing relative density. From the analysis of load distribution, the higher loading capacity at 30$^{\circ}$ of inclination of flanges with same section area may be attributed to the partial soil plug between flanges.

  • PDF

Evaluation of Resistance of Concrete-Face Rockfill Dam to Seismic Loading Using Shaking Table Test (진동대시험을 이용한 콘크리트 표면 차수벽형 석괴댐의 내진성능 평가)

  • Ha, Ik-Soo;Kim, Yong-Seong;Seo, Min-Woo;Park, Dong-Soon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1118-1125
    • /
    • 2005
  • In this study, seismic safety of CFRD(Concrete-Face Rockfill Dam) type "D" dam in operation is evaluated from the results of 1-g shaking table test using similitude laws. Model dam is made by similitude law considering the grain size of prototype dam component. After the model dam is impounded to the normal water level(N.W.L), it is excited by artificial earthquake wave corresponding to standard design respond spectrum of the "D" dam site. Displacement response behavior of the dam is examined through the measurement of vertical and horizontal displacement of dam crest. Also, amplification characteristics of acceleration with dam height is examined through the measurement of acceleration with dam height. Finally, the purpose of this study is to evaluate seismic safety of "D" dam in operation. From the results of acceleration measurement, it was found that acceleration of dam crest was amplified about 1.52 times compared to the acceleration of dam bottom and amplification phenomenon is outstanding at three quarters of dam height from the bottom of dam. From the analysis of displacement behavior, it was estimated that vertical displacement of prototype dam is 6.8cm (0.1% of dam height) and horizontal displacement 12.3cm(0.2% of dam height). These percentages is much lower than 1% of dam height(general stability criteria). Therefore, it was concluded that seismic stability of "D" dam against an estimated earthquake is guaranteed.

  • PDF

Determination of Mode I Fracture Toughness of Rocks Using Wedge Splitting Test (쐐기 분열 시험을 이용한 암석의 모드 I 파괴인성 측정)

  • Ko, Tae Young;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.523-531
    • /
    • 2019
  • In the applications of rock mechanics or rock engineering including drill and blast, drilling and mechanical excavation, the fracture toughness is an important factor. Several methods have been proposed to measure the fracture toughness of rocks. In this study, wedge splitting test specimen which is prepared with ease and tested under compression loading was used to obtain mode I fracture toughness of rocks. The equation of stress intensity factor through numerical analysis is proposed from the stress state of crack tip considering both vertical and horizontal loads due to the vertical load acting on the wedge. The validity of the wedge splitting test method was confirmed by comparing the mode I fracture toughness values obtained by the GD and SENB test specimens.

Full mouth rehabilitation of the patient with crossed occlusion using removable partial denture restoration: A case report (엇갈린 교합 환자에서의 가철성 보철을 이용한 전악구강회복 증례)

  • Choi, Yu-Ra;Kang, Jeong-Kyung;Kim, Na-Hong;Chang, Hee-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.55 no.1
    • /
    • pp.38-45
    • /
    • 2017
  • In removable partial denture with crossed occlusion, it is difficult to meet the satisfaction of patient due to variable movement of denture and unfavorable stability under loading. In a case with few unilaterally teeth remaining, additional treatments such as implantation or residual root are required to assure bilaterally stable support. However, due to the medical condition of the patient with hypertension, angina and old age etc., removable partial denture was planned as treatment in this case. Proper diagnosis, accurate analysis and full understanding of the adaptation for neuromuscular system are necessary to recover the vertical dimension of patient from a decreased vertical dimension due to crossed occlusion.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • v.74 no.1
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

Numerical simulation of wind loading on roadside noise mitigation structures

  • TSE, K.T.;Yang, Yi;Shum, K.M.;Xie, Zhuangning
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.299-315
    • /
    • 2013
  • Numerical research on four typical configurations of noise mitigation structures and their characteristics of wind loads are reported in this paper. The turbulence model as well the model parameters, the modeling of the equilibrium atmospheric boundary layer, the mesh discretization etc., were carefully considered in the numerical model to improve the numerical accuracy. Also a numerical validation of one configuration with the wind tunnel test data was made. Through detailed analyses of the wind load characteristics with the inclined part and the wind incidence angle, it was found that the addition of an inclined part to a noise mitigation structure at-grade would affect the mean nett pressure coefficients on the vertical part, and that the extent of this effect depends on the length of the inclined part itself. The magnitudes of the mean nett pressure coefficients for both the vertical part and the inclined part of noise mitigation structure at-grade tended to increase with length of inclined part. Finally, a comparison with the wind load code British/European Standard BS EN 1991-1-4:2005 was made and the envelope of the mean nett pressure coefficients of the noise mitigation structures was given for design purposes. The current research should be helpful to improve current wind codes by providing more reasonable wind pressure coefficients for different configurations of noise mitigation structures.