• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.022 seconds

Dynamic Characteristics of the Box Structure in Multi-layered Ground Under Earthquake Load (지진하중을 받는 다층지반내 박스구조물의 동적 특성)

  • Kim, In Dae;Shin, Eun Chul;Park, Jeong Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.1
    • /
    • pp.55-63
    • /
    • 2020
  • In this study, a scaled model test of the shaking table and a seismic analysis considering effective stresses were performed to reveal the dynamic behavior characteristics of box structures deep located in multi-layered soils upon seismic loading. The input seismic wave was operated below the ground using five seismic waves, including long period wave (Hachinohe), short period wave (Ofunato), artificial wave and real earthquakes that occurred in Gyeong-ju and Po-hang. As a result of model test and numerical analysis, the vertical displacement of box structures upon seismic loading was greater than that of horizontal direction, and it was confirmed that an increase of excess pore water pressure below the foundation ground caused a displacement. In addition, behavior of the ground and structures during artificial seismic wave appeared to be larger than real earthquake wave.

Study on the possible application of Vibrated and Rolled reinforced concrete pipe to vertical.crossing water distribution system (진동 및 전압 철근 콘크리트관의 종.횡단배수관 적용성 검토에 관한 연구)

  • Park Do-Kyong;Lee Myung-Kue;Yang Keek-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.2 s.20
    • /
    • pp.111-117
    • /
    • 2006
  • In case of carrying out vortical crossing water distribution system in expressways or general roads construction, VR(Vibrated and Rolled reinforced concrete) pipes are restricted because of their specification of reinforced spun concrete pipe or on-site made pipe. Therefore, in order to apply VR pipes to those constructions, through the structural behavior experiments of the pipes, VR pipes are compared and verified with reinforced spun concrete pipe and the results are obtained as the following. From the experiments and analyses of Pipe Stiffness(PS) of the pipes, cracking loading is approved to satisfy the KS regulations. Through a direct load test, the cracking loading strength and the maximum load test of VR pipe is larger compared with reinforced spun concrete pipe. Particularly, even if side weld is thin, there is no little change in the cracking strength of VR pipe. The results of the direct load test analysis show that the structural behavior of VR pipe is equivalent or higher compared with reinforced spun concrete pipe in performance and VR pipe could be used as the water distribution pipe for roads. In this study, through pipe stiffness, direct load test and load teat on earth, reinforced spun concrete pipe and VR pipe are compared. And as a result, the structural behavior of VR pipe is comprehensively excellent. From the structural behavior tests, VR pipe's section shows more thickness and has uniform characteristics so that VR pipe is considered more favorable than reinforced spun concrete pipe.

Research on Dynamic Behavior of Double-Layer Barrelvault Arch Systems Subjected to Earthquake Loadings (지진하중에 대한 복층 배럴볼트 시스템의 동적거동에 대한 연구)

  • Shin, Ji-Wook;Lee, Ki-Hak;Jung, Chan-Woo;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.9 no.1
    • /
    • pp.87-94
    • /
    • 2009
  • This paper presents dynamic behavior of double-layer barrelvault systems subjected to earthquake loadings. In order to investigate different seismic behaviors according to Time History Analysis (THA), six open angles were employed and different fundamental frequencies corresponding to each open angle were considered. A total of 24 double-layer structures were developed by using Midas Gen., which is a computer analysis program and then THA with three different earthquakes with 5% damping ratio was performed. This study investigated the characteristics of the dynamic response for X-, Y- and Z- directions, both subjected to the horizontal earthquake (H) and applied to the vertical earthquake (V) with respect to the each variable, which assumed to be important aspects for spatial structure. In order to examine the dynamic characteristics, the ratio of acceleration in specific nodes of barrelvaults was evaluated at the time with maximum response. The main purpose of this study is to obtain equations of the equivalent earthquake loading with respect to the barrelvault systems.

  • PDF

Experimental Investigation for Evaluating Wave Forces on Perforated Caisson with Two Wave Chambers (유수실이 2개인 유공케이슨의 파력 산정에 관한 실험적 연구)

  • Oh, Sang-Ho;Ji, Chang-Hwan;Lee, Dal Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.6
    • /
    • pp.443-451
    • /
    • 2015
  • Design formula for estimating the wave loading on the perforated caisson having two wave chambers is yet available. In this study, the analysis results are presented with the experimental data for the wave force acting on such a breakwater model. Based on the experimental results, it was able to clarify the variation of wave action according to five different wave phases that are associated with peak wave loading at the three vertical walls. Then the force adjustment factor for double-chamber caisson was estimated, similarly as Takahashi and Shimosako (1994), which needs to be further validated with subsequent experiments and practical application in the field.

Ground Reaction Force Characteristics During Forward and Backward Walking Over 20 Degree Ramp (20° 경사로 앞.뒤 보행 동작 시 지면반력의 형태 비교 분석)

  • Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.3
    • /
    • pp.71-82
    • /
    • 2008
  • W. S. CHAE, Ground Reaction Force Charateristics During Forward and Backward Walking Over 20 Degree Ramp. Korean Journal of Sport Biomechanics, Vol. 18, No. 3, pp. 71-82, 2008. The purpose of this study was to compare GRF characteristics during forward and backward walking over 20 degree ramp. Temporal parameters, GRFs, displacement of center of pressure (DCP), and loading and decay rates were determined for each trial. The results showed that the vertical GRF in BD during RTO was significantly greater than those found in FU. This reults indicated that GRF patterns may be changed by different walking conditions and altering position of ankle, knee, and center of mass throughout the walking cycle. The DCP during $RHC_2$-LHC in antero-posterior direction for downward was smaller than the corresponding value for upward condition. It' seems that the ankle and knee joints are locked in an awkward fashion at the toe contact to compensate for imbalance. Reducing the magnitude of loading rate can be achieved by walking in the backward direction. Accordingly, the results can be a benefit if one is suffering from an impact-type injury.

Application of Horizontal Barrier on a Rack to Reduce Fire Spread (화재확산 저감을 위한 랙크 내 수평차단막 적용에 관한 연구)

  • Yeo, In-Hwan;Cho, Gyu-Hwan
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.71-79
    • /
    • 2017
  • A rack warehouse with a vertically loading type and high loading density has severe risks and damage during its fire. In this regard, US and Japan strive to minimize the fire spread by applying in-rack sprinkler, horizontal barriers, etc. corresponding to their own rack warehouse but there is no study and policy in Korea. Therefore, a model scale fire test was carried out targeting the standard rack incorporating the national rack warehouse in order to check fire characteristics in ignition points and installation distances of horizontal barriers in this study. As a result of the test, vertical fire spread of about 30% was inhibited by narrowing its installation distance from 2-layer to 1-layer in an ignition condition of the flue space. In addition, as a result of the measurement of the temperature in the upper and lower parts of the horizontal barrier, the temperature distribution showed about 2~4 higher in a condition with an installation of the barrier than that in the condition without the barrier. Consequently, it is likely that the horizontal barrier will help the initial operation of in-rack sprinkler.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.

Effect of tightening torque on the connection stability of a custom-abutment implant system: 3D finite element analysis (지대주 나사 조임 토크가 맞춤형 지대주 임플란트 시스템의 연결부 안정성에 미치는 영향: 3차원 유한 요소 해석)

  • Hong, Min-Ho
    • Journal of Technologic Dentistry
    • /
    • v.43 no.3
    • /
    • pp.99-105
    • /
    • 2021
  • Purpose: This study aims to examine the stress distribution effect of tightening torques of different abutment screws in a custom-abutment implant system on the abutment-fixture connection interface stability using finite element analysis. Methods: The custom-abutment implant system structures used in this study were designed using CATIA program. It was presumed that the abutment screws with a tightening torque of 10, 20, and 30 N·cm fixed the abutment and fixture. Furthermore, two external loadings, vertical loading and oblique loading, were applied. Results: When the screw tightening torque was 10 N·cm, the maximum stress value of the abutment screw was 287.2 MPa that is equivalent to 33% of Ti-6Al-4V yield strength. When the tightening torque was 20 N·cm, the maximum stress value of the abutment screw was 573.9 MPa that is equivalent to 65% of Ti-6Al-4V yield strength. When the tightening torque was 30 N·cm, the maximum stress value of the abutment screw was 859.6 MPa that is similar to the Ti-6Al-4V yield strength. Conclusion: As the screw preload rose when applying each tightening torque to the custom-abutment implant system, the equivalent stress increased. It was found that the tightening torque of the abutment influenced the abutment-fixture connection interface stability. The analysis results indicate that a custom-abutment implant system should closely consider the optimal tightening torque according to clinical functional loads.

Evaluation of two interforaminal implants and implant-assisted removable dentures on stress distribution: an in vitro study

  • Bilhan, Selda Arat;Geckili, Onur;Cilingir, Altug;Bozdag, Ergun;Bilhan, Hakan
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.4
    • /
    • pp.199-206
    • /
    • 2019
  • Objectives: In mandibular edentulism, the treatment option with a two-interforaminal implant-retained bridge and a removable partial denture is rarely evaluated in literature. The aim of this in vitro study was to evaluate the stress distribution of this treatment option by comparing it with traditional treatment options with interforaminal implants in the edentulous mandible. Materials and Methods: Two interforaminal implants were placed in a formalin-fixed cadaver mandible, and overdentures with three different types of attachments were fabricated: (1) two ball attachments and an overdenture, (2) a Dolder bar and an overdenture, and (3) screw-retained two-implant inter-canine porcelain fused to a metal bridge and an implant-assisted removable denture (IARD) with precision attachments. Three biting conditions were generated for each denture type, and the strains were documented under vertical loading of 100 N. Results: The calculated strain values from measured strains in all measurement sites and loading conditions for the screw-retained two-implant intercanine porcelain fused to a metal bridge and a cast framework partial denture with precision attachments situation were lower than in the other scenarios (P<0.05). Conclusion: Within the limitations of the present study, it can be concluded that an IARD may be a reasonable and valuable alternative to ball attachments or a bar in two interforaminal implants, especially when the patients prefer to be able to show their teeth even when they take out their removable dentures.

Durability Evaluation of Gangway Ring for the Articulated Bogie of High speed Railway Vehicle (고속철도차량 관절대차 갱웨이 링의 내구성 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.66-72
    • /
    • 2019
  • To improve ride quality and running stability of high speed train(HST), it is important that connection between coaches adopts the articulated bogies by using a gangway ring, unlike the conventional independent bogies assembled with car bodies. Although the gangway ring should be ensured absolute safety against passenger movement between coaches during train operation, there is still a lack of quantitative durability criteria of that. Therefore, in order to improve the passenger safety of HST, it is important to study the test requirements on durability evaluation for the ring. In this study, seven mixed loading cases were derived from the triaxial loading(vertical/lateral/longitudinal) modes. The safety factor of each component is at least 2.4 or more from the results of the finite element analysis. In addition, fatigue safety was evaluated through durability analysis from the viewpoint of strain-life design. Durability tests for the gangway ring carried out a total of 10 million cycles in 4 phases load conditions. After the durability test, the defect of each component was investigated using nondestructive testing techniques.