• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.03 seconds

Behavior of Sand Bag for Maintenance Railroad Bed Subjected to Cyclic Loading (반복하중을 받는 철도노반보수용 샌드백의 거동분석)

  • Shin Eun-Chul;Hwang Seon-Keun;Lee Dong-Hyun;Ryu In-Gi
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1033-1040
    • /
    • 2004
  • Utilizing of the geotextile container shows several advantages such as standardized construction, factory manufactured products, the control of quality, workability. and economical point of view. Recently this technique can be applied to rehabilitate the loss of rail roadbed due to the heavy rainfall. In this study, a large-scale laboratory test were conducted with simulation of static performance on the geotextile container reinforced rail roadbed. Based on the laboratory test results, the vertical pressure distribution with respect to the depth, and settlement of rail roadbed were measured and compared test results between geotextile container reinforced case and unrein forced case. Thus, the effectiveness of reinforcement was evaluated in terms of its performance and stability.

  • PDF

Mat Foundation Analysis Using Variable Node Plate Bending Element (변절점 굉판휨요소를 이용한 전면기초의 해석)

  • 최창근;김한수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.04a
    • /
    • pp.7-12
    • /
    • 1992
  • The variable node plate bending element, ie, the element with one or two additional mid-side nodes is used in the analysis of mat foundation to generate the nearly ideal grid model in which more nodes are defined near the column location. The plate bending element used in this study is the one based on Mindlin/Reissner plate theory with substitute shear strain field and the nodal stresses of that element are obtained by the local smoothing technique. The interaction of the soil material with the mat foundation is modeled with Winkler springs connected to the nodal points in the mat model. The vertical stiffness of the soil material are represented in terms of a modulus of subgrade reaction and are computed in the same way as to the computation of consistent nodal force of uniform surface loading. Several mesh schemes were proposed and tested to find the most suitable scheme for mat foundation analysis.

  • PDF

Study of Smart Bi-directional Pile Load Test by Model Test (모형시험을 통한 Smart 양방향말뚝 재하시험에 관한 연구)

  • Kim, Nak-Kyung;Kim, Ung-Jin;Joo, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1088-1093
    • /
    • 2010
  • The Smart bi-directional pile load test with variable end plate overcomes the shortcoming of the Osterberg cell test. It is possible that the ultimate bearing capacity of piles can be known by using two different end plates. The first step is to measure end bearing capacity with smaller end plate and the second step is similar to the conventional O-cell test. In this study, model test was performed to evaluate the smart bi-directional pile load test in sand. Vertical displacement of the model pile were messured at the axial loading condition.

  • PDF

Investigation of Safety and Design of Precast Concrete Modular Building (건축용 프리캐스트 콘크리트 모듈의 설계 및 안전성 검토)

  • Lee, Sang-Sup;Park, Keum-Sung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.35-42
    • /
    • 2020
  • The purpose of this study is to develop precast concrete modules that can be used as a booth and a single-story building with a large space. This precast concrete module is originally designed to have a hexagonal facade when the upper and lower parts, which are symmetrical about horizontal connection line, are combined. A structural design was conducted to ensure structural safety of these precast concrete modules and to extend the slope of the inclined members as far as possible. Then the finite element analysis was performed to estimate the lateral and vertical deflection of complete precast concrete modular structures. And to verify the structural safety of these precast concrete modules, weight loading tests were conducted on the upper and lower modules respectively.

Experimental Study on the Structural Behaviors of Reinforced Flat Plate Under Lateral Loads (수평하중하에서 철근 콘크리트 플랫 플레이트의 구조적 거동에 관한 실험적 연구)

  • 조영직;박성무
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.323-328
    • /
    • 1995
  • This paper is experimental study to define the structural behaviors of reinforced flat plate under combined gravity and lateral loads. Specific objectives of this study reported herein are : (1) To study the behavior of a typical slab-column subassemblage under lateral loading. (2) To study the effects of vertical loads on slab-column lateral load behavior. (3) To investigate the post-failure behavior of slab-column connetios. To achieve these objectives, this study includes four tests of slab-column subassemblages that were made for 1/2 scale. Finally, Test results of this study show that the level of gravity load on the flat plate is one of the most important factors determining the lateral behavior of flat plate connections.

  • PDF

A safety evaluation on the loading test of EMU′s carbody having stainless and aluminum (스테인리스와 알루미늄으로 제작된 전동차의 구조체 하중시험에 대한 안전성 평가)

  • 정종덕;김원경;윤성철;편장식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1525-1529
    • /
    • 2003
  • This paper describes the result of carbody load test. The purpose of the test is to evaluate an safety which carbody structure shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load and operating condition. Carbody material applied a stainless steel and an aluminum alloy, The stainless steel model is the carbody of a motor car which is delivering to KNR line 1 in 2002 and the aluminum alloy model is the carbody of a motor car which is delivering to GWANGJU line 1 in 2003.

  • PDF

A Study on the Suitability of Suction Caisson Foundation for the 5Mw Offshore Wind Turbine (5MW급 해상풍력발전시스템용 Suction Caisson 하부구조물 적합성 연구)

  • Kim, Yong-Chun;Chung, Chin-Wha;Park, Hyun-Chul;Lee, Seunug-Min;Kwon, Dae-Yong;Shi, Wei
    • New & Renewable Energy
    • /
    • v.6 no.3
    • /
    • pp.47-54
    • /
    • 2010
  • Foundation plays an important role in the offshore wind turbine system. Different from conventional foundations, the suction caisson is proven to be economical and reliable. In this work, three-dimensional finite element method is used to check the suitability of suction caisson foundation. NREL 5MW wind turbine is chosen as a baseline model in our simulation. The maximum overturning moment and vertical load at the mudline are calculated using FAST and Bladed. Meanwhile the soil-structure interaction response from our simulation is also compared with the experiment data from Oxford university. The design parameter such as caisson length, diameter of skirt and spacing of multipod are investigated. Accordingly based on these parameters suggestions are given to use suction caisson foundations more efficiently.

Damage assessment of linear structures by a static approach, II: Numerical simulation studies

  • Tseng, Shih-Shong
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.195-208
    • /
    • 2000
  • To confirm the theory and static defect energy (SDE) equations proposed in the first part, extensive numerical simulation studies are performed in this portion. Stiffness method is applied to calculate the components of the stresses and strains from which the energy components and finally, the SDE are obtained. Examples are designed to cover almost all kinds of possibilities. Variables include structural type, material, cross-section, support constraint, loading type, magnitude and position. The SDE diagram is unique in the way of presenting damage information: two different energy constants are separated by a sharp vertical drop right at the damage location. Simulation results are successfully implemented for both methods in all the cases.

Development of Simulation Program for Tilt Rotor Aircraft (틸트로터 항공기 비선형 시뮬레이션 프로그램 개발)

  • Yoo, Chang-Sun;Choi, Hyung-Sik;Park, Bum-Jin;Ahn, Sung-Jun;Kang, Young-Shin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.3
    • /
    • pp.193-199
    • /
    • 2005
  • VTOL(Vertical Take-Off and Landing) aircraft is attractive due to the reason that it is not necessary to have long runway. However a rotorcraft has a definite limitation to fly at the high speed due to the stall at the tip of rotor. To solve this problem, tilt rotor, tilt wing and lift fan were researched and developed. It was verified that the tilt rotor aircraft among them was more effective in disk loading. On this basis, the tilt rotor aircraft has been made into XV-15, V-22, BA-609 and Eagle Eye. This paper shows a nonlinear simulation program for general tilt rotor aircraft that was developed in order to validate the flight characteristics of tilt rotor aircraft and verified through the simulation analysis.

An Analysis of Plate on the Elastic Half-Space by Using the Improved Subsection Method (개선된 소영역분할법을 이용한 탄성지반위에 놓인 평판의 해석)

  • Han, Choong-Mok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • A Plate on the elastic half-space may be generally be analyzed by the finite element method. However, there ate some difficulties to obtain the flexibility matrix of the foundation based on the Boussinesq's theory. In this study, an efficient numerical procedure which uses the analysis results of the vertical displacements due to the uniformly distributed loading in a circular area is presented. Some numerical examples represent better results than those of numerical integration technique or subsection method especially in the case of irregular mesh pattern.