• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.029 seconds

The Theta Analysis on the Components of Ground Reaction Force According to the Ground Conditions During Gait (보행 시 지면조건에 따른 지면반력 성분의 세타 분석)

  • Ryew, Che-Cheong;Hyun, Seung-Hyun
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.241-248
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the theta on the components of ground reaction force according to the ground conditions during gait. Method : Six healthy women(mean age: 22 yrs, mean height: $166.14{\pm}2.51cm$, mean body weights: $56.61{\pm}4.58kg$) participated in this study. The medial-lateral GRF(Fx 1), anterior-posterior GRF(Fy 1, Fy 2), vertical GRF(Fz 1, Fz 2, Fz 3), and impact loading rate were determined from time function and frequency domain. Also, GRF theta were time function and forces. Results : Fx 1, Fy 1 and Fy 2 of stair descending showed significant statistically higher forces than that of level walking, and ascending. Fz 1 of stairs descending showed significant statistically higher forces than that of level walking and stairs ascending(theta $88.62^{\circ}$). Also, Fz 2 of level walking showed significant statistically higher forces than that of stairs ascending and descending(theta $65.78^{\circ}$). Fz 3 of stairs ascending showed significant statistically higher forces than that of level walking and stairs descending($65.26^{\circ}$). Impact loading rate of stairs descending showed significant statistically higher forces than that of level and ascending walking. The GRF showed similar correlation with GRF theta(r=.603) according to the ground conditions during gait. Conclusion : These results suggest that the GRF theta can be used in conjunction with a gait characteristics, prediction of loading rate and dynamic stability.

Characteristics of Inflow Water Quality Variations and Pollutants Transport in Imha Reservoir during a Rainfall Event (강우시 임하호 유입수 수질변동과 오염물질의 공간적 이동 특성)

  • Lee, Heung Soo;Shin, Myung Jong;Yoon, Sung Wan;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.97-106
    • /
    • 2013
  • The temporal and spatial variations of water quality in a stratified reservoir are fully dependent on the characteristics of inflow loading from its watershed and the transport regimes of pollutants after entering the reservoir. Because of the meteorological and hydrological conditions in Korea, the pollutants loading to reservoirs are mostly occur during rainfall events. Therefore it is important to understand the characteristics of pollutants loading from upstream rivers and their spatial propagation through the stratified reservoir during the rainfall events. The objectives of this study were to characterize the water quality variations in upstream rivers of Imha Reservoir during a rainfall event, and the transport and spatial variations of pollutants in the reservoir through extensive field monitoring and laboratory analysis. The results showed that the event mean concentration (EMC) of SS, BOD, $COD_{Mn}$, T-N, T-P, $PO_4-P$ are 8.6 ~ 362.1, 2.5 ~ 5.1, 1.5 ~ 5.1, 1.1 ~ 1.9, 8.3 ~ 57.1, 5.6 ~ 25.7 times greater than the mean concentrations of these parameters during non-rainfall period. The turbidity and SS data showed good linear correlations, but the relationships between flow and SS showed large variations because of hysteresis effect during rising and falling periods of the flood. The ratio of POC to TOC were 12.6 ~ 14.7% during the non-rainfall periods, but increased up to 28.2 ~ 41.7% during the flood event. The turbid flood flow formed underflow and interflow after entering the reservoir, and delivered a great amount of non-point pollutants such as labile and refractory organic matters and nutrients to the metalimnion layer of reservoir, which is just above the thermocline. Spatially, the lateral variations of most water quality parameters were marginal but the vertical variations were significant.

Stress analysis according to the different angulation of the implant fixture (임플란트 고정체의 매식 경사에 따른 응력분석)

  • Lee, Tae-Yup;Kang, Dong-Wan
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.18 no.4
    • /
    • pp.321-329
    • /
    • 2002
  • Bending moments results from offset overloading of dental implant, which may cause stress concentrations to exceed the physiological capacity of cortical bone and lead to various kinds of mechanical failures. The purpose of this study was to compare the distributing pattern of stress on the finite element models with the different angulated placement of dental implant in mandibular posterior missing areas. The three kinds of finite element model, were designed according to 3 main configurations: Model 1(parallel typed placement of 2 fixtures), Model 2(15. distal angulated placement of one fixture on second molar area), Model 3(15. mesial angulated placement of one fixture on second molar area). The cemented crowns for mandibular first and second molars were made on the two fixtures (4mm 11.5). Three-dimensional finite element models by two fixtures were constructed with the components of the implant and surrounding bone. A 200N vertical static load were applied to the center of central fossa and the point 2mm apart from the center of central fossa on each model. The preprocessing, solving and postprocessing procedures were done by using FEM analysis software NISA/DISPLAY IV Version 10.0((Engineering Mechanics Research Corporation, USA). Von Mises stresses were evaluated and compared in the supporting bone, fixtures, and abutment. The results were as following : (1) Under the point loading at the central fossa, the direction of angulated fixture affected the stress pattern of implants. (2) Under the offset loading, the position of loading affected more on the stress concentration of implants compare to the angulated direction of implants. The results had a tendency to increase the stress on the supporting bone, fixture and screw under the offset loads when the placement angulation of implant fixture is placed toward mesial or distal direction. In designing of the occlusal scheme for angulated placement, placing the occlusal contacts axially during chewing appears to have advantages in a biomechanical viewpoint.

Evaluation of Internal Bracing Member Forces due to Distortional Behaviors of Tub Section Steel Box Girders (U형 강박스 거더의 뒤틀림 거동에 의한 내부 수직브레이싱 부재력 평가)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2011
  • In this study, the distortional behaviors of tub-section steel girders subjected to torsional loading were analyzed, and predictor equations were developed for estimating the member forces induced in the internal bracing system installed in the steel tub girders. Torsional loadings originated either by eccentric vertical loading or girder curvature were decomposed into the pure torsional force component that does not affect the distortional box deformation, and into the distortional force component that directly induces box distortion. The axial member forces induced in the internal cross frames were formulated as a function of the magnitude of torsional loading through the analytical investigation of the interactions between the distortional force component and internal cross frames. To verify the proposed equations, three-dimensional finite element analysis (3D FEA) was conducted for the straight simple-span girder and the three-span continuous girder samples. Very good agreement was found between the member forces from the FEA and the proposed equations.

Estimation of Weight Parameters for Small Fishing Vessels in Accordance with Loading Conditions (소형 어선의 재화상태를 고려한 중량 정보 추정 기법)

  • Kim, Dong Jin;Yeo, Dong Jin
    • Journal of Navigation and Port Research
    • /
    • v.43 no.1
    • /
    • pp.16-22
    • /
    • 2019
  • This study proposed estimation methods for weight and center of gravity of small fishing vessels. Weights loaded on small fishing vessels were divided into fixed weights such as crew, fishing gear, and variable weights such as fuel, fresh water, provision, bait, and fish. Based on statistical analyses with weight data of several small fishing vessels, weight, longitudinal center of gravity (LCG), vertical center of gravity (KG) of each item were represented as linear functions of vessel gross tonnage. In addition, weighting factors of variable weights were added on estimation formulas in accordance with vessel loading conditions, e.g. full load departure condition. Estimation methods were verified using actual small fishing vessel data.

FINITE ELEMENT ANALYSIS OF STRESS PATTERNS ON PERIODONTIUM OF SPLINTED ABUTMENTSFOR DISTAL EXTENSION REMOVABLE PARTIAL DENTURE (후방연장 국소의치에서 지대치의 splinting에 따른 치주조직의 응력 변화에 관한 유한요소법적 연구)

  • Hwang, Jae-Woong;Chang, Ik-Tae;Kim, Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.2
    • /
    • pp.241-268
    • /
    • 1995
  • Splint therapy, the immobilization of teeth, has been done for patient's masticatory comforts and an adjunctive aid in periodontal therapy. Mandibular premolars are frequently splinted in many distal extension removable partial denture cases. But splinting is an extensive restoration that may not be conservative of tooth structure and may prove to be quite costly to the patient. The two dimensional finite element analysis method was used to determine the magnitude and mode of distribution of the stresses of the periodontal ligament and supporting alveolar bone when abutments with different periodontal supports were splinted and distal-extension removable partial denture was subjected to different loading schemes. The results were as follows : 1. When abutments were splinted, stresses moved from apico-distal to apico-mesial of terminal abutment on a vertical force and from disto-alveolar crest to apex on a distally directed force. But stresses were generally diminished on a mesially directed force. 2. As vertical bone loss was proceeding, most of stresses were transmitted to residual ridge and the rest of stresses were concentrated on apex of distal abutment. But these apical stresses were minimized when abutments were splinted. 3. As mesially inclined bone loss was proceeding, it seemed to be dangerous that many stresses were concentrated on the distal alveolar crest, especially in the distally directed load case. Abutments splinting decreased the alveolar crestal stresses but not enough. 4. For all vertical stresses were effectively decreased on splinting, stresses were concentrated as highly on apico-mesial area of distal abutment in distally directed load cases as the distal inclination of bone level was severe. 5. The directions and magnitudes of abutment movements were decreased with teeth splinting.

  • PDF

Wave energy conversion utilizing vertical motion of water in the array of water chambers aligned in the direction of wave propagation

  • Hadano, Kesayoshi;Lee, Ki Yeol;Moon, Byung Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 2017
  • As a new technical approach, wave energy converter by using vertical motion of water in the multiple water chambers were developed to realize actual wave power generation as eco-environmental renewable energy. And practical use of wave energy converter was actually to require the following conditions: (1) setting up of the relevant device and its application to wave power generation in case that severe wave loading is avoided; (2) workability in installation and maintenance operations; (3) high energy conversion potential; and (4) low cost. In this system, neither the wall(s) of the chambers nor the energy conversion device(s) are exposed to the impulsive load due to water wave. Also since this system is profitable when set along the jetty or along a long floating body, installation and maintenance are done without difficulty and the cost is reduced. In this paper, we describe the system which consists of a float, a shaft connected with another shaft, a rack and pinion arrangement, a ratchet mechanism, and rotary type generator(s). Then, we present the dynamics model for evaluating the output electric power, and the results of numerical calculation including the effect of the phase shift of up/down motion of the water in the array of water chambers aligned along the direction of wave propagation.

Modal Testing of Arches for Plastic Film-Covered Greenhouses (비닐하우스 아치구조의 모달실험)

  • Cho, Soon-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.57-65
    • /
    • 2010
  • To determine the static buckling loads and evaluate the structural performance of slender steel pipe-arches such as for greenhouse structures, a series of modal tests using a fixed hammer and roving sensors was carried out, by providing no load, then a range of vertical loads, on an arch rib in several steps. More attention was given to an internal arch where vertical and horizontal auxiliary members are not placed, unlike an end arch. Modal parameters such as natural frequencies, mode shapes and damping ratios were extracted using more advanced system identification methods such as PolyMAX (Polyreference Least-Squares Complex Frequency Domain), and compared with those predicted by commercial FEA (Finite Element Analysis) software ANSYS for various conditions. A good correlation between them was achieved in an overall sense, however the reduction of natural frequencies due to the existence of preaxial loads was not apparent when the vertical load level was about up to 38% of its resistance. Some difficulties related to the field testing and parameter extraction for a very slender arch, as might arise from the influences of neighboring members, are carefully discussed.

A Study on Discharge Capacity of Vertical Drain Considering with In-situ Soil Condition (원지반조건을 고려한 연직배수재의 통수능에 관한 연구)

  • Park, Min-Chul;Kim, Eun-Chul;Lee, Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Discharge capacity of PBD is sensitive in proportion to thickness and ground condition, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity gets larger according to ground condition, construction condition and soil properties. But cause and analysis of those problems like reduced discharge of capacity and delayed dissipation of pore water pressure for discharge capacity is lack. Thus, in this text, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with in-situ ground condition. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. After in-situ ground and reclamation of ground are dredged, load following the loading step of 30, 70 and 120kPa using a pressure device. Result of the test, The discharge capacity was SM>ML>CL>CL(dredged soil) in situ condition and more fine-grained content, the amount of discharge was greater.

The Efficacy of Community-Based Rehabilitation Exercise to Improve Physical Function in Old Women with Knee Arthritis (지역사회중심재활운동이 여성 슬관절염 환자의 신체기능에 미치는 효과)

  • Kim, Su-Min;Song, Ju-Min
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2010
  • Purpose: The purpose of this study was to compare the effects of Tai-Chi exercise (TCE) and resistance exercise (RE) when used as part of a community-based exercise program on improvement of physical function in elderly women with knee arthritis. Methods: Forty-seven women with knee arthritis participated in this study. They were assigned to one of two groups: the TCE group (n=22) or the RE group (n=25). Tai-Chi exercise and resistance exercise sessions were held for 1 hour per session, twice per week, for 8 consecutive weeks. At pre-treatment and post-treatment, subjects were tested using the following measurements: one-legged stand test (sec), a functional reach test (cm), a test of the strength of the knee extensor and flexor muscles, determination of the pathway of center of foot pressure and vertical ground reaction force for stance phase at pre and post treatment time points. An independent t-test and a ${\chi}^2$ were used to determine the significance of differences between group means using SPSS 12.0. Results: After 8 weeks of participation in the exercise programs, there were significant improvements for both groups in joint pain, difficulty of performing activity, muscle strength of knee extensor and flexor. Also, vertical ground reaction force increased at the loading response phase for both groups. The RE group was significantly different from TC group on the eyes-closed one-legged stand test (sec). Conclusion: Tai-Chi exercise and resistance exercise programs improve physical functioning and reduce pain and locomotion difficulties.