• Title/Summary/Keyword: vertical loading

Search Result 792, Processing Time 0.028 seconds

Measurement of K0 and K'0 during loading and unloading of loose sand

  • Shay Nachum;Mark Talesnick;Sam Frydman
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.97-110
    • /
    • 2023
  • The coefficient of lateral earth pressure at rest in loose sand during virgin loading, K0 , and during unloading, K'0 , have been determined from laterally confined load-unload tests. The tests included measurement of lateral pressure with null pressure gauges, side wall friction with newly designed friction meters and applied pressure and base pressure with load cells. The importance of accounting for side-wall friction when evaluating the distribution of vertical pressure over the height of the soil specimen was demonstrated. Relatively uniform friction was observed during loading, but this was not the case during unloading unless friction reduction measures were employed. While the measured value of K0 was found to be close to, if slightly higher than the value commonly estimated on the basis of friction angle, φ', the ratio of K'0 to K0 was found to reasonably fit an expression of the form K'0/K0 = 1 + C·log(OCR), with C equal to 1 in the present tests.

After-fracture behaviour of steel-concrete composite twin I-girder bridges: An experimental study

  • Lin, Weiwei
    • Steel and Composite Structures
    • /
    • v.42 no.1
    • /
    • pp.139-149
    • /
    • 2022
  • To simplify the design and reduce the construction cost of traditional multi-girder structural systems, twin I-girder structures are widely used in many countries in recent years. Due to the concern on post-fracture redundancy, however, twin girder bridges are currently classified as fracture critical structures in AASHTO specifications for highway bridges. To investigate the after-fracture behavior of such structures, a composite steel and concrete twin girder specimen was built and an artificial fracture through the web and the bottom flange was created on one main girder. The static loading test was performed to investigate its mechanical performance after a severe fracture occurred on the main girder. Applied load and vertical displacement curves, and the applied load versus strain relationships at key sections were measured. To investigate the load distribution and transfer capacities between two steel girders, the normal strain development on crossbeams was also measured during the loading test. In addition, both shear and normal strains of studs were also measured in the loading test to explore the behavior of shear connectors in such bridges. The functions and structural performance of structural members and possible load transfer paths after main girder fractures in such bridges were also discussed. The test results indicate in this study that a typical twin I-girder can resist a general fracture on one of its two main girders. The presented results can provide references for post-fracture performance and optimization for the design of twin I-girder bridges and similar structures.

The drained deformation characteristics of sand subjected to lateral cyclic loading

  • Junhua Xiao;Jiapei Ma;Jianfeng Xue;Zhiyong Liu;Yingqi Bai
    • Geomechanics and Engineering
    • /
    • v.34 no.5
    • /
    • pp.481-489
    • /
    • 2023
  • Drained cyclic triaxial tests were conducted on a saturated sand to examine its deformation characteristics under either axial or lateral cyclic loading condition. To apply lateral cyclic loading, the cell pressure was cycled while maintaining a constant vertical stress. The strain accumulations and flow direction in the soil were presented and discussed considering various initial stress ratios (η0), cyclic stress amplitudes and cyclic stress paths. The results indicate that axial strain accumulation shows an exponential increase with the maximum stress ratio (ηmax). The initial deviatoric stress has comparable effects with lateral cyclic stress amplitude on the accumulated axial strain. In contrast, the accumulated volumetric strain is directly proportional to the lateral cyclic stress amplitude but not much affected by η0 values. Due to the anisotropy of the soil, the accumulated axial and lateral bulging strains are greater in lateral cyclic loading when compared to axial cyclic loading even though ηmax is the same. It is also found that ηmax affects soil's lateral deformation and increasing the ratio could change the lateral deformation from contraction to bulging. The flow direction depends on ηmax in the sand under lateral cyclic loading, regardless of η0 values and the cyclic stress amplitudes, and a large ηmax could lead to great deviatoric strain but a little volumetric strain accumulation.

Influence of loading and unloading of hydraulic support on the caving property of top coal

  • Huayong Lv;Fei Liu;Xu Gao;Tao Zhou;Xiang Yuan
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • The caving property of top coal is a key factor to the success of top coal caving mining. The influence law of cyclic loading and unloading of hydraulic support on top coal caving is of great significance to improve the recovery rate of top coal. The similar simulation methods were used to study the dynamic evolution of the top coal cracks under the multi-cycle action of the support, and the parameters of top coal cracks were analyzed quantitatively in this paper. The results show that the top coal cracks can be divided into horizontal cracks and vertical cracks under the cyclic loading and unloading of the support. With the increase of the times of the support cycles loading and unloading, the load on the support decreases, the fractal dimension of the cracks increases, the number and total length of the top coal cracks increases, and the top coal caving is getting better. With the increase of the times of multi-cycle loading and unloading, the fractal dimension, total crack length and crack rate of top coal show a trend of rapid increase first and then increase slowly. Both the total length of the top coal cracks and the crack rate basically show linear growth with the change of the fractal dimension. The top coal caving can be well improved and the coal resource recovery rate increased through the multi-cycle loading and unloading.

Experimental Study on Structural Behavior of Double Ribbed Deep-Deck Plate under Construction Loads (시공하중이 작용하는 더블리브 깊은 데크플레이트의 구조거동에 대한 실험적 연구)

  • Heo, Inwook;Han, Sun-Jin;Choi, Seung-Ho;Kim, Kang Su;Kim, Sung-Bae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.49-57
    • /
    • 2019
  • Recently, the use of deep deck plate has been increased in various structures, such as underground parking lots, logistics warehouses, because it can reduce construction periods and labor costs. In this study, a newly developed Double Deck (D-deck) plate which can leads to save story heights has been introduced, and experimental tests on a total of five D-deck plates under construction loads have been carried out to investigate their structural performance at construction stage. The loads were applied by sands and concrete to simulate the actual distributed loading conditions, and the vertical deflection of D-Deck and the horizontal deformation of web were measured and analyzed in detail. As a result, it was confirmed that all the D-decks showed very small vertical deflection of less than 5.34 mm under construction loads, which satisfies the maximum deflection limit of L / 180. In addition, the D-Deck plate was found to have a sufficient rigidity to resist construction loads in a stable manner.

Structural Analysis of Deepwater Steel Catenary Riser using OrcaFlex (OrcaFlex를 이용한 심해 SCR 구조 해석)

  • Park, Kyu-Sik;Choi, Han-Suk;Kim, Do-Kyun;Yu, Su-Young;Kang, Soo-Chang
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.16-27
    • /
    • 2015
  • The design challenges when attempting to obtain sufficient strength for a deepwater steel catenary riser (SCR) include high stress near the hang-off location, an elevated beam-column buckling load due to the effective compression in the touchdown zone (TDZ), and increased stress and low-cycle fatigue damage in the TDZ. Therefore, a systematic strength analysis is required for the proper design of an SCR. However, deepwater SCR analysis is a new research area. Thus, the objective of this study was to develop an overall analysis procedure for a deepwater SCR. The structural behavior of a deepwater SCR under various environmental loading conditions was investigated, and a sensitivity analysis was conducted with respect to various parameters such as the SCR weight, weight of the internal contents, hang-off angle (HOA), and vertical soil stiffness. Based on a deepwater SCR design example, it was found that the maximum stress of an SCR occurred at a hang-off location under parallel loading direction with respect to the riser plane, except for a wave dominant dynamic survival loading condition. Furthermore, the tensile stress governed the total stress of the SCRs, whereas the bending stress governed the total stress at the TDZ. The weight of the SCR and internal contents affected the maximum stress of the SCR more than the HOA and vertical soil stiffness, because the weight of the SCR, including the internal contents, was directly related to its tensile stress.

Study on Pullout Behavior of Embedded Suction Anchors in Sand using ALE (Arbitrary Lagrangian Eulerian) Technique (ALE 기법을 이용한 모래지반에서 석션 매입 앵커의 인발 거동 분석)

  • Na, Seon Hong;Jang, In Sung;Kwon, O Soon;Lee, Seung Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.167-173
    • /
    • 2014
  • The embedded suction anchor, ESA, is one type of mooring anchor systems which utilizes the suction pile or caisson to penetrate the anchor into the sea bed and develops its capacity under pullout load. In this study, the numerical analysis using ALE (Arbitrary Lagrangian Eulerian) Adaptive Meshing technique was performed to simulate the pullout behavior of the ESA, and the results were compared to those of the previous research, centrifuge model tests and the analytical method based on limit equilibrium theory. The pullout behaviors of the ESA under horizontal, vertical, and inclined loading were evaluated. The analysis results showed that the maximum horizontal pullout load was developed when the location of loading point was at the mid-point, and the each vertical pullout load gave the similar value regardless of the locations of the loading points. The pullout load decreased as the load inclination angle increased at the mid-point of the anchor.

Biomechanical Comparison Analysis of Popular Insole and Functional Insole of Running Shoes (런닝화의 일반인솔과 기능성인솔의 운동역학적 비교 분석)

  • Shin, Sung-Hwon;Jin, Young-Wan
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.3
    • /
    • pp.9-18
    • /
    • 2006
  • These studies show that I applied to functional insole (a specific S company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24$ meter per second by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, Motion analysis was caused by Achilles tendon angle, Angle of the lower leg, Angle of the knee, Initial sole angle and Barefoot angle. Second, Contact time, Vertical impact force peak timing, Vertical active force and Active force timing, and Maximum loading rate under impulse of first 20 percent and Value of total impulse caused Ground reaction force. Third. The tendon fo Quadriceps femoris, Biceps femoris, Tibialis anterior and gastronemius medials caused. electromyography. 1. Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). 2 Electromyography showed that averagely was distinguished from other factors, and did not show about that. Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

Seismic vulnerbility analysis of Bankstown's West Terrace railway bridge

  • Mirza, Olivia;Kaewunruen, Sakdirat;Galia, Darren
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.569-585
    • /
    • 2016
  • This paper highlights a case study that investigates the behaviour of existing bridge, West Terrace Bridge, induced by horizontal seismic loading. Unfortunately the lack of past information related to seismic activity within the NSW region has made it difficult to understand better the capacity of the structure if Earthquake occurs. The research was conducted through the University of Western Sydney in conjunction with Railcorp Australia, as part of disaster reduction preparedness program. The focus of seismic analyses was on the assessment of stress behaviour, induced by cyclic horizontal/vertical displacements, within the concrete slab and steel truss of the bridge under various Earthquake Year Return Intervals (YRI) of 1-100, 1-200, 1-250, 1-500, 1-800, 1-1000, 1-1500, 1-2000 and 1-2500. Furthermore the stresses and displacements were rigorously analysed through a parametric study conducted using different boundary conditions. The numerical analysis of the concrete slab and steel truss were performed through the finite element software, ABAQUS. The field measurements and observation had been used to validate the results drawn from the finite element simulation. It was illustrated that under a YRI of 1/1000 the bottom chord of the steel truss failed as the stress induced surpassed the ultimate stress capacity and the horizontal displacement exceeded the allowable displacement measured in the field observations whereas the vertical displacement remained within the previously observed limitations. Furthermore the parametric studies in this paper demonstrate that a change in boundary conditions alleviated the stress distribution throughout the structure allowing it to withstand a greater load induced by the earthquake YRI but ultimately failed when the maximum earthquake loading was applied. Therefore it was recommended to provide a gap of 50mm on the end of the concrete slab to allow the structure to displace without increasing the stress in the structure. Finally, this study has proposed a design chart to showcase the failure mode of the bridge when subjected to seismic loading.

Relationship between Ground Reaction Force and Attack Time According to the Position of Hand Segments during Counter Attack in Kendo

  • Hyun, Seung Hyun;Jin, HyeonSeong;Ryew, Che Cheong
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Objective: The purpose of this study was to analyze the relationship between ground reaction force (GRF) and attack time according to the position of hand segments during counter attack in Kendo. Method: The participants consisted of 10 kendo athletes (mean age: $21.50{\pm}1.95yr$, mean height: $175.58{\pm}5.02cm$, mean body weight: $70.96{\pm}9.47kg$) who performed standard head strikes (A) and counter attack with a preferred hand position of +10 cm (B), 0 cm (C), and -10 cm (D). One force-plate (AMTI-OR-7., USA) was used to collect GRF data at a sample rate of 1,000 Hz. The variables analyzed were the attack time, medial-lateral GRF, anterior-posterior GRF (AP GRF), peak vertical force (PVF), and loading rate. Results: The total attack time was shorter in types A and C than in types C and D. The AP GRF, PVF, and loading rate had significantly higher forces in types C and D than in types A and C. The attack time (bilateral and unilateral leg support and total) was positively correlated with the GRF variables (vertical GRF and loading rate) during the counter attack in Kendo (r = 0.779 [$R^2=0.607$], p < 0.001). Conclusion: The positions of the hand segments can be changed by various conditions of the opponent in Kendo competitions; however, the position preferred by an individual can promote the successful ratio of the counter attack.