• 제목/요약/키워드: vertical joints

검색결과 255건 처리시간 0.022초

연직접합(鉛直接合)의 강성(剛性)이 프리케스트 전단벽(剪斷壁)의 구조적거동(構造的擧動)에 미치는 영향(影響) I. 하중조합(荷重組合) 1에 대하여 (Influence of the stiffness of Vertical Joints on the Behaviour of Precast Shear Walls. Part1. Load Case 1)

  • 박경호
    • 산업기술연구
    • /
    • 제3권
    • /
    • pp.103-116
    • /
    • 1983
  • Recent developments in multi-storey buildings for residential purpose have led to the extensive use of shear walls for the basic structural system. When the coupled shear wall system is used, joined together with cast-in-place concrete or mortar (or grout), the function of the continuous joints is a crucial factor in determining the safety of L.P. Precast concrete shear wall structures, because the function of the continuous joints(Vertical wall to wall joints) is to transfer froces from one element(shear wall panel) to another, and if sufficient strength and ductility is not developed in the continuous joints, the available strength in the adjoining elements may not be fully utilized. In this paper, the influence of the stiffness of vertical joints(wet vertical keyed shear joints) on the behaviour of precast shear walls is theoretically investigated. To define how the stiffness of the vertical joints affect the load carrying capacity of L.P.Precast concrete shear wall structure, the L.P.Precast concrete shear wall structure is analyzed, with the stiffness of the vertical joints varying from $K=0.07kg/mm^3$(50MN/m/m) to $K=1.43kg/mm^3$(1000MN/m/m), by using the continuous connection method. The results of the analysis shows that at the low values of the vertical stiffness, i.e. from $K=0.07kg/mm^3$(50MN/m/m) to $K=0.57kg/mm^3$(400MN/m/m), the resisting bending moment and shearing force of precast shear walls, the resisting shearing force of vertical joints and connecting beams are significantly affected. The detailed results of analysis are represented in the following figures and Tables.

  • PDF

PC 벽체 수직접합부의 개발 및 전단성능 평가 (Development and Shear Performance Evaluation of Vertical Joints between Precast Concrete Walls)

  • 문교영;김승직;이기학;김용남
    • 한국공간구조학회논문집
    • /
    • 제22권4호
    • /
    • pp.81-88
    • /
    • 2022
  • The paper introduces an experimental program for the newly developed vertical joints between Precast Concrete (PC) walls to improve their in-plane shear capacity. Compared to the existing vertical joints, two types of vertical joints were developed by increasing the transverse reinforcement ratio and improving frictional force at the joint interface. A total of four specimens including the Reinforced Concrete (RC) wall and PC walls with developed vertical joints were designed and constructed. The constructed specimens were experimentally investigated through monotonic shear tests. The observed damage, load-deformation relationship, strain and strength are investigated and compared with the cases of RC wall specimen. Experimental results indicate that the maximum force and initial stiffness of the PC wall with proposed vertical joints were decreased by comparing with those of RC wall. However, the ultimate displacement increased by up to 217.30% compared to the RC wall specimen. In addition, brittle failure did not occurred and relatively few cracks and damages occurred.

대형 콘크리트 판넬구조의 수직접합부 전단강도에 관한 연구 (Shear Strength of the Vertical Joints in Precast Concrete Large Panel Structures)

  • 서수연;이원호;이리형
    • 콘크리트학회지
    • /
    • 제6권1호
    • /
    • pp.111-119
    • /
    • 1994
  • 대형 콘크리트 패널구조 시스템의 수직접합부 저항요소는 접합부 충전 그라우트의 부착과 전단키에 의한 맞물림작용, 철근을 장부작용으로서, 이들 요인의 상관관계에 의해 그 내력이 결정된다. 따라서 수직접합부에 관한 연구는 대부분이 이들 요인에 관한 연구로 국한된다고 할 수 있다. 수직접합부의 전단강도에 관한 연구는 국외의 많은 연구자들에 의해 실시되었으며 그 결과 여러 실험식이 제시되어 있는 상황이다. 국내에서도 수직접합부에 관한 일련의 실험연구가 진행되어 설계식이 제시되었으나, 이들 설계식은 국부적인 실험결과만을 대상으로 제시되었기 때문에 보다 많은 실험결과를 근거로한 설계식이 요망된다. 본 연구에서는 국내에서 실험된 총 94개의 수직접합부 실험결과를 분석하고 수정된 Mohr-Coulomb의 항복선이론을 적용하여 적합한 설계식을 제시하고자 하였다. 제안된 설계식은 전단키의 효과와 횡보강근의 효과를 고려한 식으로서 모르터 또는 콘크리트를 그라우트로 사용하며 횡보강근으로 루프철근을 사용한 수직접합부에 적용된다. 실험결과의 희구분석과 항복선 이론을 이용한 수식의 전개로부터 제안된 설계식의 정확성과 경제성을 평가 한 결과, 본 제안식이 실험결과를 안전측으로 평가할 뿐만아니라 기존식에 비하여 경제적인 설계가 가증한 것으로 나타났다.

대형 콘크리트 패널 구조의 수직접합부 내력에 관한 고찰 (Strength of Vertical Joints in Large Concrete Panel Structures)

  • 이용재;서수연;이원호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1992년도 봄 학술발표회 논문집
    • /
    • pp.95-98
    • /
    • 1992
  • In large panel structures, the design of joints which interconnect panels, is important deciding the load-bearing capacity of structures. Being various factors in the design of joints, it is difficult to develop a the critical system for the structural analysis of large concrete panel structures. Therefore there is a tendency to depend on the experiment. The purpose of this paper is to investigate the strength and the mechanical behavior of vertical joints in large concrete panel structures.

  • PDF

영구벽체로 사용하는 지하연속벽 수직시공이음부의 내진설계 개요 (Overview of Seismic Design for Vertical Construction Joints of Slurry Walls Used as Permanent Basement Walls)

  • 이정영;김승원;김두기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.393-394
    • /
    • 2023
  • This paper provides an overview of seismic design considerations for vertical construction joints of a slurry walls used as a permanent basement walls.

  • PDF

수직접합부 강성을 고려한 프리캐스트 콘크리트 대형판구조물의 응력해석 (Stress Analysis of Precast Concrete Large Panel Structures Taking Account of Stiffness of Vertical Joints)

  • 장극관;이한선;신영식;류진호
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1993년도 가을 학술발표회논문집
    • /
    • pp.149-156
    • /
    • 1993
  • Precast concrete (P.C.) large panel structures have usually weaker stiffness at joints than that of monolithic in-situ reinforced concrete structures. But structural designers do not in general take into account this characteristics of P. C. large panel structures and use the same analytical models as for the monolithic structure. Therefore, the results of analysis obtained by using these models may be quite different from those actually occuring in real P.C. structure. In this study, the change in force and stress distribution and deflections of structure caused by applying lower shear stiffness at vertical joints are investigated through trying several finite element modeling schemes specific for P.C. structures. Finally, for engineers in practice. a simplified model, which takes account of the effect of lower shear stiffness at vertical joints, is proposed with the understanding on possible amount of errors.

  • PDF

가중용접전류를 이용한 FCAW 필릿용접용 아크센싱 알고리즘 연구 (A Study on the Effective Arc Sensing by the Use of the Weighted-Arc-Current in Flux-Cored Arc Welding for Fillet Joints)

  • 권순창;최재성
    • Journal of Welding and Joining
    • /
    • 제18권1호
    • /
    • pp.83-90
    • /
    • 2000
  • It was attempted to improve seam-tracking performance by applying a new arc-sensing algorithm for FCAW(flux-cored arc welding) process in fillet joints. For this study the authors have introduced three different weight factors: $\circled1$ arc currents at the weaving end are more weighted, $\circled2$ arc currents are evenly weighted along the weaving, and $\circled3$ arc currents at the weaving center are more weighted. To evaluate the 3 factors the values of signal-to-noise(S/N) ratio has been measured. The values were obtained for various welding conditions with different gaps in horizontal and vertical fillet joints. The test results showed that the S/N ratio of the 1st case was highest which resulted in the best of seam tracking performance. In addition, the comparison between the seam tracking performance in horizontal fillet joints and that in vertical ones has been done, and the result showed that tracking performance in vertical joints was relatively better than that in horizontal joints.

  • PDF

지하연속벽 수직시공이음부의 전단접합부에 대한 힘-변위 상관도 (Force-Displacement Relationship Diagram for Shear Connections in Vertical Construction Joints of Slurry Walls)

  • 이정영;김승원;김두기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.397-398
    • /
    • 2023
  • To design the shear connections for vertical construction joints of slurry walls, it is necessary to create a force-displacement curve that represents the structural performance of the shear connections. This paper proposes a method for preparing the force-displacement curve of the shear connections including major considerations.

  • PDF

Wide Joint를 가진 PC벽체 수직접합부의 거동에 관한연구 (Structural Behavior and system Development of Wide Vertical Joints for the Pre-cast Concrete Walls)

  • 최수연;신영수;홍건호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회 논문집(II)
    • /
    • pp.897-902
    • /
    • 2000
  • In most of large panel pre-cast concrete system, the narrow joints have inefficiency to assemble several panels and structural problems due to their complicated process after construction. To improve, practically, structural performance and inefficiency to assemble, the behavior and strength of new wide joints method should be investigated experimentally. The result is that the shear force of wide joints is similar to that of loop joints, or more than. It seems that the use of wide joints is the possible methods in a construction field.

시스템 동바리의 수직재와 수평재 연결부 경계조건에 따른 거동 분석 (Structural Behavior Analysis of System Supports according to Boundary Condition of Joints between Vertical and Horizontal Members)

  • 김경윤;원정훈;김상효
    • 한국안전학회지
    • /
    • 제32권3호
    • /
    • pp.60-65
    • /
    • 2017
  • This study examined the effect of rotational stiffness of joints between vertical and horizontal members in system supports. In order to prevent repeated disasters of system supports, it is important to examine the accurate behavior of system supports. Among various factors affecting the complex behavior of system supports, this study focused on the stiffness of joints between vertical and horizontal members. The considered joint was modelled by a rotational spring, but the translational displacements were fixed. The stiffness of rotational spring was calculated by utilizing the usable experimental data. In addition, the hinge connection condition, which is generally considered in design and only restrict the translational displacements, was modelled to compare the results. The case with the rotational stiffness in joints showed 3.5 times buckling loads compared to the case without the rotational stiffness. Thus, the structural behavior of the vertical member in system supports was similar to the vertical member with the fixed condition. For the combined stresses of vertical members, the combined stress ratios were reduced 5~6% by considering the rotational stiffness of connecting parts. However, for the horizontal member where showed relatively small stress range, the stresses were increased 2.3~7.6 times by considering the rotational stiffness in connecting parts.