• Title/Summary/Keyword: vertical frame

Search Result 449, Processing Time 0.029 seconds

The determinants of vertical overbite and overbite depth indicator(ODI) (수직피개의 결정요인과 수직피개 심도지수(ODI)의 상호관계)

  • Yang, Sang-Duk
    • The korean journal of orthodontics
    • /
    • v.29 no.3 s.74
    • /
    • pp.349-360
    • /
    • 1999
  • The concept of denture frame, both the vertical and horizontal relationship of the dentitions are ultimately related to a skeletal configuration, leads to postulate that the vertical overbite will be determined by the jaw rotations and anteroposterior jaw relationship. Also, ODI is analyzed to be composed of the determinant factors of overbite such as FMA PPA and FABA. From the geometric analyses of an interrelationship between the ODT and the overbite determinants, the following formula can be induced. ODI norm=$85^{\circ} - 0.5 PMA-(1.08 - 0.01 FMA)(FABA - 81^{\circ})$. This formula indicates that the norm of ODI is not constant value but variable one according to the individual skeletal frames. Through the application of the formula to the various clinical cases, it is proved that the new concept, relativity of the ODI norm, is very diagnostically useful.

  • PDF

Implementation of Real-time Stereoscopic Image Conversion Algorithm Using Luminance and Vertical Position (휘도와 수직 위치 정보를 이용한 입체 변환 알고리즘 구현)

  • Yun, Jong-Ho;Choi, Myul-Rul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.5
    • /
    • pp.1225-1233
    • /
    • 2008
  • In this paper, the 2D/3D converting algorithm is proposed. The single frame of 2D image is used fur the real-time processing of the proposed algorithm. The proposed algorithm creates a 3D image with the depth map by using the vertical position information of a object in a single frame. In order to real-time processing and improve the hardware complexity, it performs the generation of a depth map using the image sampling, the object segmentation with the luminance standardization and the boundary scan. It might be suitable to a still image and a moving image, and it can provide a good 3D effect on a image such as a long distance image, a landscape, or a panorama photo because it uses a vertical position information. The proposed algorithm can adapt a 3D effect to a image without the restrictions of the direction, velocity or scene change of an object. It has been evaluated with the visual test and the comparing to the MTD(Modified Time Difference) method using the APD(Absolute Parallax Difference).

Numerical modelling of the behavior of bare and masonry-infilled steel frames with different types of connections under static loads

  • Galal Elsamak;Ahmed H. Elmasry;Basem O. Rageh
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.103-119
    • /
    • 2024
  • In this paper, the non-linear behavior of masonry-infill and bare steel frames using different beam-column connections under monotonic static loading was investigated through a parametric study. Numerical models were carried out using one- and two-dimensional modelling to validate the experimental results. After validating the experimental results by using these models, a parametric study was carried out to model the behavior of these frames using flushed, extended, and welded connections. The results showed that using the welded or extended connection is more efficient than using the flushed type in masonry-infilled steel frames, since the lateral capacities, initial stiffness, and toughness have been increased by 155%, 601%, and 165%, respectively in the case of using welded connections compared with those used in bare frames. The FE investigation was broadened to study the influence of the variation of the uniaxial column loads on the lateral capacities of the bare/infill steel frames. As the results showed when increasing the amount of uniaxial loading on the columns, whether in tension or compression, causes the lateral load capacity of the columns to decrease by 26% for welded infilled steel frames. Finally, the influence of using different types of beam-to-column connections on the vertical capacities of the bare/infill steel frames under settlement effect was also studied. As a result, it was found that, the vertical load capacity of all types of frames and with using any type of connections is severely reduced, and this decrease may reach 62% for welded infilled frames. Furthermore, the flushed masonry-infilled steel frame has a higher resistance to the vertical loads than the flushed bare steel frame by 133%.

Backscattering Features of Oyster Sea Farming in AIRSAR Image and Laboratory Experiment

  • Lee Seung-Kuk;Hong Sang-Hoon;Won Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.582-585
    • /
    • 2004
  • Oyster fanning structures in tidal flats are well detected by SAR system. Each frame of these artificial structures is composed of two vertical and one horizontal wooden pole. We investigate characteristics of polarimetric features in the target structures. In this paper, the results of AIRSAR L-band POLSAR data and experiments in laboratory are discussed. The ratio of single bounce to double bounce scattering depends of vertical pole height, direction of horizontal pole to radar look direction, and incidence angle as well as sea surface condition. We have conducted laboratory experiments. According to target scale, Ku-band and targets downsized by scale of 10 are used. The results of the experiments are summarized as: i) total power of the backscattering is more affected by vertical poles than a horizontal pole; ii) and backscattering from a horizontal pole is sensitive to the relative radar look direction to target array. We conclude that water level can be effectively measured by using interferometric phase and backscattering intensity if vertical poles in the water are observed by L-band HH- or VV-polarization. Measurement of tide height can be further improved if double bounced components are separated from fully polarized SAR data.

  • PDF

A Study on the Improvement of the Rotor Shape for Improving Performance of Small Wind Turbine with Vertical Axis (수직축 소형 풍력터빈 성능 향상을 위한 로터 형상 개선에 대한 연구)

  • Kim, C.J.;Kim, J.U.;Paek, I.S.;Kim, C.J.
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.37-40
    • /
    • 2017
  • This study was carried out to improve the performance of a vertical-axis micro wind turbine. It is unique in that it has two identical generators on both sides of the main shaft. Also it has a C shape frame to fix the generators and the main shaft firmly and to provide a connection to a tower. Performance analysis of the wind turbine rotor was performed using Qblade, which is an analysis program for vertical axis wind turbines and freeware. Based on the analysis results, the blade airfoil, the chord length, and the rotor size were modified to improve the performance of the rotor. The modification was found to increase the performance of the wind turbine and to reach the targeted rated power.

Experimental study of cyclic behavior of composite vertical shear link in eccentrically braced frames

  • Shayanfar, M.A.;Barkhordari, M.A.;Rezaeian, A.R.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.13-29
    • /
    • 2012
  • This paper is an experimental study on the behavior of vertical shear link in normal (steel section with and without stiffener) and composite (steel section with concrete located at the area limited to web and flanges of the section) configurations. This study is mainly aimed to perceive failure mechanism, collect laboratory data, and consider the effect of number of transverse reinforcements on strength and ductility of composite vertical links. There have been four specimens selected for examining the effects of different details. The first specimen was an I section with no stiffener, the second composed of I section with stiffeners provided according to AISC 2005. The third and fourth specimens were composed of I sections with reinforced concrete located at the area between its flanges and web. The tests carried out were of quasi-static type and conducted on full scale specimens. Experimental findings show remarkable increase in shear capacity and ductility of the composite links as compared to the normal specimens.

Vertical isolation of a structure based on different states of seismic performance

  • Milanchian, Reza;Hosseini, Mahmood;Nekooei, Masoud
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.103-118
    • /
    • 2017
  • In vertical seismic isolation (VSI), a building is partitioned intentionally by vertical layers into two dynamically different substructures for seismic response reduction. Initially, a 1-story frame was partitioned into two substructures, interconnected by viscous and visco-elastic links, and seismic responses of the original and the vertically isolated structures (VIS) were obtained, considering a large number of stiffness and mass ratios of substructures with respect to the original structure. Color contour graphs were defined for presentation and investigation of large amounts of output results. Dynamic characteristics of the isolated structures were studied by considering the non-classical damping of the system, and then the effects of viscous and visco-elastic link parameters on the modal damping ratios were discussed. On this basis, three states of mass isolation, interactional state, and control mass were differentiated. Response history analyses were performed by Runge-Kutta numerical method. In these analyses, interaction of isolation ratios and link parameters, on response control of VIS was studied and the appropriate ranges for link parameters as well as the optimal ranges for isolation ratios were suggested. Results show that by using the VSI technique, seismic response reduction up to 50% in flexible substructure and even more in stiff substructure is achievable.

A Proposal of Quasi Static Seismic Force for Arches subjected to both the Horizontal and Vertical Seismic Wave (수평.상하 지진을 받는 아치구조물에 대한 등가정적지진력 제안)

  • Jung, Chan-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.6
    • /
    • pp.103-110
    • /
    • 2007
  • Only horizontal seismic waves are often applied as designed load to a rectangular rigid frame because the influence of vertical seismic waves is considered small so as to be able to ignore it. But, as for the seismic responses of shell and spatial structures, the responses in the vortical direction is significantly amplified and the vertical responses are amplified even if they are subjected to the horizontal seismic wave only. And also, the horizontal and vertical seismic responses of shell and spatial structures are amplified by vortical seismic waves. An arch has been often used as the main structure component of the large spatial structures and is the mostly simple structure with the seismic response characteristics of the spatial structures. In this paper, for arches as a simple example of the shell and spatial structures, the dynamic characteristics, when the structures are subjected to the horizontal and vertical seismic wave at the same time, are studied, and the horizontal and vertical static seismic force, which have simple forms but hold the response characteristics of arches, are proposed.

  • PDF

Optimum Design of Plane Steel Frame Structures Using Refined Plastic Hinge Analysis and SUMT (개선소성힌지해석과 SUMT를 이용한 평면 강골조의 연속최적설계)

  • Yun, Young Mook;Kang, Moon Myoung;Lee, Mal Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.21-32
    • /
    • 2004
  • In this study, a continuous optimum design model with its application program for plane steel frame structures developed. In the model, the sequential unconstrained minimization technique (SUMT) transforming the nonlinear optimization problem with multidesign variables and constraints into an unconstrained minimization problem and the refined plastic hinge analysis method as one of the most effective second-order inelastic analysis methods for steel frame structures were implemented. The total weight of a steel frame structure was taken as the objective function, and the AISC-LRFD code requirements for the local and member buckling, flexural strength, shear strength, axial strength and size of the cross-sectional shapes of members were used for the derivation of constraint equations. To verify the appropriateness of the present model, the optimum designs of serveral plane steel frame structures subject to vertical and horizontal loads were conducted.

A Study on the Adaptation of Traditional Interior Elements in Restaurants and Cafe (전통주택 실내구성요소의 현대적 계승사례에 관한연구 -월간잡지에 나타난 식음료 공간을 중심으로-)

  • 오혜경;성미현
    • Korean Institute of Interior Design Journal
    • /
    • no.17
    • /
    • pp.45-51
    • /
    • 1998
  • A purpose of this study was to investigate actual condition of the modern adaptation of interior elements(wall, floor, ceiling. door & window) in traditional house. The examined objects were 185 pictures of restaurants and cafe interior spaces from the 5 different monthly magazines between jan. 1993. to Dec 1997. The results of this study were as follows : 1. Mostly they were either partial adaptation from the original or partially transformed adaptation rather than entire adaptation of the original. 2. Of the traditional interior elements adapted in restaurants and cafe space only specific elements were being adapted. For example partial adaptation from the original were oiled paper flooring(Jangpan) plaster wall ceiling finish that left the rafters and beams exposed(Yondung-chonjang) and window or door frame which is vertical lattices accented with horizontal lattices grouped into three sections(Ttisal-mum) And partially transformed adaptation were oiled paper flooring rice papered (Hangji) wall Yondung-chonjang window or door frame of Wan character(Wanja-mun). 3, In regard to space the mostly adapted spaces were halls rather than rooms.

  • PDF