• Title/Summary/Keyword: vertical bearing behavior

Search Result 137, Processing Time 0.023 seconds

Dry Connections for Precast Shear Wall Systems (프리캐스트 전단벽 시스템의 건식접합부에 관한 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.530-533
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC walls require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

Precast Shear Wall Systems with C Type Connections (C형 접합부를 이용한 프리캐스트 전단벽 시스템에 관한 연구)

  • Hong, Sung-Gul;Lim, Woo-Young
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.217-224
    • /
    • 2006
  • This thesis investigates the behavior of precast wall systems with a new vertical connection which are proportioned by the displacement based design. The proposed precast wall systems are supposed to provide additional spaces and seismic strengthening in remodeling existing residential buildings. For a fast remodeling constructions using PC wails require an efficient, economic fabrication method. A C-type vertical connections for PC wall systems is proposed for transfer of bending moment between walls in the vertical direction while a shear key in the center of wall is prepared to transfer shear forces by bearing. The proposed vertical connection allows us easy fabrication because of different direction of slots at the edges of wall. The dimension of C-type connection components are determined by engineering models and a series of test.

  • PDF

An Experimental Study on the Shear Behavior of Reinforced Concrete Deep Beams Subject to Concentrated Loads (집중하중을 받는 철근콘크리트 깊은 보의 전단거동에 대한 실험적 연구)

  • 송우석;이진섭;양창현;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.273-278
    • /
    • 1994
  • The shear behavior of simply supported reinforced concrete deep beams subject to concentrated loads has been scrutinized experimentally to verify the influence of the structural parameters such as shear span ratio, and the horizontal and vertical web reinforcements. A total of 27 specimens has been tested at the laboratory. In the tests all specimens have failed in shear causing inclined cracks from the load application points to the supports. The load bearing capacities have changed significantly depending on the shear span ratio. The effects of the vertical and horizontal reinforcements on the shear strength and crack initiation and propagation have been carefully checked and analyzed.

  • PDF

Effect on Dynamic Behavior of Group Piles with Changing Thickness of Pile Cap

  • Jeong, Kusic;Ahn, Sangro;Kim, Seongho;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.7
    • /
    • pp.5-11
    • /
    • 2018
  • Instead of a single pile, group piles are usually used for the pile foundation. If the earthquake occurs in the ground where group piles are installed, dynamic behavior of group piles are affected not only by interaction of piles and the ground movement but also by the pile cap. However, in Korea, the pile cap influence is not taken account into the design of group piles. Research on dynamic behavior of group piles has been performed only to verify interaction of piles and the ground and has not considered the pile cap as a factor. In this research, 1g shaking table model tests were performed to verify the thickness of the pile cap affects dynamic behavior of group piles that were installed in the ground where the earthquake would occur. The test results show that, as thickness of the pile cap increased, acceleration and horizontal displacement of the pile cap decreasd while vertical displacement of the pile cap increased. The results also showed that, among the group files tested, acceleration, horizontal displacement, and vertical displacement of the bearing pile are smaller than those of the friction pile.

Experimental evaluation of back-to-back anchored walls by double-plates anchors

  • Amir, Najafizadeh;AmirAli, Zad
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.599-614
    • /
    • 2022
  • One of the methods of stabilizing retaining walls, embankments, and deep excavations is the implementation of plate anchors (like the Geolock wall anchor systems). Back-to-back Mechanically Stabilized Earth (BBMSE) walls are common stabilized earth structures that can be used for bridge ramps. But so far, the analysis of the interactive behavior of two back-to-back anchored walls (BBAW) by double-plates anchors (constructed closely from each other and subjected to the limited-breadth vertical loading) including interference of their failure and sliding surfaces has not been the subject of comprehensive studies. Indeed, in this compound system, the interaction of sliding wedges of these two back-to-back walls considering the shear failure wedge of the foundation, significantly impresses on the foundation bearing capacity, adjacent walls displacements and deformations, and their stability. In this study, the effect of horizontal distance between two walls (W), breadth of loading plate (B), and position of vertical loading was investigated experimentally. In addition, the comparison of using single and equivalent double-plate anchors was evaluated. The loading plate bearing capacity and displacements, and deformations of BBAW were measured and the results are presented. To evaluate the shape, form, and how the critical failure surfaces of the soil behind the walls and beneath the foundation intersect with one another, the Particle Image Velocimetry (PIV) technique was applied. The experimental tests results showed that in this composite system (two adjacent-loaded BBAW) the effective distance of walls is about W = 2.5*H (H: height of walls) and the foundation effective breadth is about B = H, concerning foundation bearing capacity, walls horizontal displacements and their deformations. For more amounts of W and B, the foundation and walls can be designed and analyzed individually. Besides, in this compound system, the foundation bearing capacity is an exponential function of the System Geometry Variable (SGV) whereas walls displacements are a quadratic function of it. Finally, as an important achievement, doubling the plates of anchors can facilitate using concrete walls, which have limitations in tolerating curvature.

FE analysis of RC pipes under three-edge-bearing test: Pocket and diameter influence

  • Kataoka, Marcela Novischi;da Silva, Jefferson Lins;de Oliveira, Luciane Marcela Filizola;El Debs, Mounir Khalil
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.483-490
    • /
    • 2017
  • This paper studies on the behavior of reinforced concrete (RC) pipes used in basic sanitation in the conduction of storm water and sanitary sewer. Pipes with 800 mm and 1200 mm in diameter were analyzed. The 800 mm pipes were built with simple reinforcement and the 1200 mm pipes with double reinforcement. For the two diameters of pipes the presence or absence of the pocket was evaluated, and the denomination of each one is spigot and pocket pipe (SPP) and ogee joint pipe (OJP), respectively. The 3D numerical models reproduce the three-edge-bearing test that provides information about the strength and stiffness of the reinforced concrete pipes. The validation of the computational models was carried out comparing the vertical and horizontal displacements on the springline and crown/invert and it was also evaluated the reinforcement strains and the crack pattern. As a main conclusion, the numerical models represented satisfactorily the behavior of the pipes and can be used in future studies in parametric analysis.

Seismic behavior of double steel plates and concrete filled composite shear walls subject to in-plane cyclic load: Experimental investigation

  • Xiaohu Li;Hao Luo;Xihao Ren;Tao Zhang;Lei Li;Ke Shi
    • Structural Engineering and Mechanics
    • /
    • v.90 no.4
    • /
    • pp.345-356
    • /
    • 2024
  • This paper aims to investigate the seismic behavior of double steel plate and concrete composite shear wall (DSCW) of shield buildings in nuclear power engineering through experimental study. Hence, a total of 10 specimens were tested to investigate the hysteretic performance of DSCW specimens in detail, in terms of load vs. displacement hysteretic curves, skeleton curves, failure modes, flexural strength, energy dissipation capacity. The experimental results indicated that the thickness of steel plate, vertical load and stiffener have great influence on the shear bearing capacity of shear wall, and the stud space has limited influence on the shear capacity. And finally, a novel simplified formula was proposed to predict the shear bearing capacity of composite shear wall. The predicted results showed satisfactory agreement with the experimental results.

Variation of Natural Frequency and Dynamic Behavior of Railway Open-Steel-Plate-Girder Bridge with Installing Disk Bearings (디스크 받침에 의한 철도 판형교의 고유진동수 및 동적 거동 변화)

  • Choi, Eun Soo;Lee, Hee Up;Kim, Sung Il;Kim, Lee Hyeon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.4
    • /
    • pp.437-446
    • /
    • 2006
  • Open-steel-plate-girder(OSPG) bridges are one of the most prevalent bridge types among Korean railway bridges. They account for about 40% of all Korean railway bridges. However, the line-type bearings used for OSPG bridges generate several problems with respect to the bridges' dynamic behavior and maintenance. The replacement of the existing bearings with polyurethane disk bearings could be a possible solution to this problem. This type of disk bearing is an elastic bearing using a polyurethane disk. This study estimated the variations in the natural frequency of a bridge when disk bearings were installed and the bridge's dynamic behavior with a running locomotive and running trains. The first natural frequency of the bridge was 3% lower than that of the as-built bridge after the installation of the disk lower, respectively. Also, the second and third frequencies were 7 and 15% lower, respectively. The disk bearings increased the vertical displacement of the bridge, but the pure displacement, excluding the disk deformation, did not vary. The vertical acceleration did not increase when the disk bearing was installed, with trains running. The shear pin in the disk bearing reduced the lateral displacement and the acceleration of the bridge.

Analysis of dynamic behavior of Railroad Steel Bridges According to Bridge Bearing Types (교량받침 형식에 따른 판형교 동적 분석)

  • Choi, Eun-Soo;Choi, Seung-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.1
    • /
    • pp.62-70
    • /
    • 2012
  • Dynamic behaviors of line type bearings, spherical bearings and disk bearings which are being used for railway steel bridges are investigated, and that of the bridges is also analyzed. For the purpose, the vertical displacements of the three bearings including fixed and expansion type are measured and analyzed. Also, the deformation of the PTFE plate placed inside of spherical and disk bearings of expansion type is measured and its effect on the dynamic behavior of the bridges is discussed. The up-lift phenomenon at the bearings installed for the steel bridges is estimated. The vertical displacements at mid-span of the bridges are compared according to the bearing types. Finally, the 1st mode natural frequencies are estimated and the relationship to the vertical displacement is discussed.

A Study on the Measurement and Analysis of Whirling Vibration Behavior of Marine Propulsion Shafting System using Gap-sensors

  • Sun, Jin-Suk;Han, Tae-Min;Lee, Kang-Ki;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.2
    • /
    • pp.130-135
    • /
    • 2015
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational rpm range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering from operating rpm up to target rpm, however, the range is un-measurable generally. In order to resolve the measurement issue, this study shows the measuring method and the assessment method of relevant natural frequency of whiling vibration by using measured harmonic order component of whirling vibration.