• Title/Summary/Keyword: vertical bearing behavior

Search Result 137, Processing Time 0.025 seconds

Behavior of Bridge Bearings for Railway Bridges under Running Vehicle

  • Choi, Eun-Soo;Yu, Wan-Dong;Kim, Jin-Ho;Park, Sun-Hee
    • International Journal of Railway
    • /
    • v.5 no.1
    • /
    • pp.10-21
    • /
    • 2012
  • Open steel plate girder (OPSG) bridges are the most prevalent railroad bridge type in Korea, constituting about 40% of all railroad bridges. Solid steel bearings, known as line type bearings, are placed in most OSPG railway bridges. However, the line type rigid bearings generate several problems with the bridge's dynamic behavior and maintenance in service. To compare and investigate the dynamic behaviors of line type, spherical and disk bearings, the vertical displacements of each bearing, including fixed and expansion type, under running vehicles are measured and analyzed. The displacements of disk and spherical bearings are measured after replacing the line type bearings with spherical and disk bearings. This study also analyzed dynamic behaviors of bridges. Furthermore, the deformation of the PTFE (Polytetrafluoroethylene) plate that is placed inside of expansion type spherical and disk bearings is measured and its effect on the dynamic behavior of the bridges is discussed. The up-lift phenomenon at the bearings installed for the steel bridges is estimated. The vertical displacements at mid-span of the bridges are compared according to the bearing types. Finally, the 1st mode natural frequencies are estimated, and the relationship to the vertical displacement is discussed.

A Study on the Bearing Capacity characteristics of Stone column by Numerical Analysis (수치해석에 의한 쇄석말뚝의 지지력 특성 고찰)

  • Chun, Byung-Sik;Kim, Baek-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.90-99
    • /
    • 2004
  • Stone column is one of the soft ground improvement method, which enhances ground conditions through ground water draining, settlement reducing and bearing capacity increasing complexly by using crushed stone instead of sand in general vertical drain methods. In recent, general construction material, sand is in short of supply, because of the unbalance of demand and supply. Also, the bearing capacity improving effect of stone column method is needed in many cases so the bearing capacity estimation is considered as important point. Nevertheless, adequate estimation methods to predict bearing capacity of stone column considering stone column and improving ground behavior reciprocally is not yet prepared. To contribute this situation, bearing capacity behavior of stone column were simulated as numerically on various property cases of crushed stone and surrounded ground. Through the numerical analysis of simulation results, bearing capacity behavior prediction formula was suggested. This formula was verified by comparing the prediction result with in situ test.

  • PDF

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

The Seismic Behavior of the Truss-Arch Structure by Lead Rubber Bearing and Friction Pendulum System with Seismic Isolation (납고무받침 면진장치와 마찰진자 면진장치에 의한 트러스-아치 구조물의 지진거동 비교)

  • Kim, Gee-Cheol;Seok, Keun-Yung;Kang, Joo-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.374-379
    • /
    • 2008
  • The purpose of seismic isolation system among them is to lengthen the period of structure and make its period shift from the dominant period of earthquake. In this study, the seismic behavior of arch structure with lead rubber bearing(LRB) and friction pendulum system(FPS) is analyzed. The arch structure is the simplest structure and has the basic dynamic characteristics among large spatial structures. Also, Large spatial structures have large vertical response by horizontal seismic vibration, unlike seismic behavior of normal rahmen structures. When horizontal seismic load is applied to the large spatial structure with isolation systems, the horizontal acceleration response of the large spatial structure is reduced and the vertical seismic response is remarkably reduced.

  • PDF

Dynamic Behavior Analysis of a Orbiting Scroll in Scroll Compressor with Tangential Leakage (접선방향의 누설이 고려된 스크롤 압축기 선회 스크롤의 동적 거동 해석)

  • 김태종;한동철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.41-46
    • /
    • 1996
  • For a vertical type crankshaft-journal bearing system used in scroll compressor, nonlinear transient response analysis is applied includung nonlinear fluid film reaction forces of journal beatings. By a connected behavior analysis of crankshaft and orbiting scroll, the radial clearance of scroll wraps is calculated. Considering tangential leakage for this clearance, a coupled analysis model for leakage and dynamic behavior of the orbiting scroll is made, and analyzed by iterative calculation. By regarding clearances of main, sub bearing of crankshaft and orbiting scroll shaft bearing clearance as design parameters, the radial clearance of scroll wraps is analyzed.

  • PDF

Micro modelling of masonry walls by plane bar elements for detecting elastic behavior

  • Doven, Mahmud Sami;Kafkas, Ugur
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.643-649
    • /
    • 2017
  • Masonry walls are amongst the oldest building systems. A large portion of the research on these structures focuses on the load-bearing walls. Numerical methods have been generally used in modelling load-bearing walls during recent years. In this context, macro and micro modelling techniques emerge as widely accepted techniques. Micro modelling is used to investigate the local behaviour of load-bearing walls in detail whereas macro modelling is used to investigate the general behaviour of masonry buildings. The main objective of this study is to investigate the elastic behaviour of the load- bearing walls in masonry buildings by using micro modelling technique. In order to do this the brick and mortar units of the masonry walls are modelled by the combination of plane truss elements and plane frame elements with no shear deformations. The model used in this study has fewer unknowns then the models encountered in the references. In this study the vertical frame elements have equivalent elasticity modulus and moment of inertia which are calculated by the developed software. Under in-plane static loads the elastic displacements of the masonry walls, which are encountered in literature, are calculated by the developed software, where brick units are modelled by plane frame elements, horizontal joints are modelled by vertical frame elements and vertical joints are modelled by horizontal plane truss elements. The calculated results are compatible with those given in the references.

Numerical study on the influence of embedment footing and vertical load on lateral load sharing in piled raft foundations

  • Sommart Swasdi;Tanan Chub-Uppakarn;Thanakorn Chompoorat;Worathep Sae-Long
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.545-561
    • /
    • 2024
  • Piled raft foundation has become widely used in the recent years because it can increase bearing capacity of foundation with control settlement. The design for a piled raft in terms vertical load and lateral load need to understands contribution load behavior to raft and pile in piled raft foundation system. The load-bearing behavior of the piled raft, especially concerning lateral loads, is highly complex and challenge to analyze. The complex mechanism of piled rafts can be clarified by using three dimensional (3-D) Finite Element Method (FEM). Therefore, this paper focuses on free-standing head pile group, on-ground piled raft, and embedded raft for the piled raft foundation systems. The lateral resistant of piled raft foundation was investigated in terms of relationship between vertical load, lateral load and displacement, as well as the lateral load sharing of the raft. The results show that both vertical load and raft position significantly impact the lateral load capacity of the piled raft, especially when the vertical load increases and the raft embeds into the soil. On the same condition of vertical settlement and lateral displacement, piled raft experiences a substantial demonstrates a higher capacity for lateral load sharing compared to the on-ground raft. Ultimately, regarding design considerations, the piled raft can reliably support lateral loads while exhibiting behavior within the elastic range, in which it is safe to use.

Behavior of sand columns reinforced by vertical geotextile encasement and horizontal geotextile layers

  • Shamsi, Mohammad;Ghanbari, Ali;Nazariafshar, Javad
    • Geomechanics and Engineering
    • /
    • v.19 no.4
    • /
    • pp.329-342
    • /
    • 2019
  • In this paper, the effect of a group of sand columns in the loose soil bed using triaxial tests was studied. To investigate the effect of geotextile reinforcement type on the bearing capacity of these sand columns, Vertical encased sand columns (VESCs) and horizontally reinforced sand columns (HRSCs) were used. Number of sixteen independent triaxial tests and finite element simulation were performed on specimens with a diameter of 100 mm and a height of 200 mm. Specimens were reinforced by either a single sand column or three sand columns with the same area replacement ratio (16%) to evaluate the Influence of the column arrangement. Effect the number of sand columns, the length of vertical encasement and the number of horizontal reinforcing layers were investigated, in terms of bearing capacity improvement and economy. The results indicated that the ultimate bearing capacity of the samples with three ordinary sand columns (OSCs) is eventually about 11% more than samples with an OSC. Also, comparison of the column reinforcing modes showed that four horizontal layers of geotextile achieved similar performance to a vertical encasement geotextile at the 50% of the column height, from the viewpoint of strength improvement, while from the viewpoint of economy, the geotextile needed for encasing the single column is around 2.5 times of the geotextile required for four layers.

Experimental analysis of rocking shallow foundation on cohesive sand

  • Moosavian, S.M. Hadi;Ghalandarzadeh, Abbas;Hosseini, Abdollah
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.597-608
    • /
    • 2022
  • One of the most important parameters affecting nonlinearsoil-structure interaction, especially rocking foundation, is the vertical factor of safety (F.Sv). In this research, the effect of F.Sv on the behavior of rocking foundations was experimentally investigated. A set of slow, cyclic, horizontal loading tests was conducted on elastic SDOF structures with different shallow foundations. Vertical bearing capacity tests also were conducted to determine the F.Sv more precisely. Furthermore, 10% silt was mixed with the dry sand at a 5% moisture content to reach the minimum apparent cohesion. The results of the vertical bearing capacity tests showed that the bearing capacity coefficients (Nc and Nγ) were influenced by the scaling effect. The results of horizontal cyclic loading tests showed that the trend of increase in capacity was substantially related to the source of nonlinearity and it varied by changing F.Sv. Stiffness degradation was found to occur in the final cycles of loading. The results indicated that the moment capacity and damping ratio of the system in models with lower F.Sv values depended on soil specifications such cohesiveness or non-cohesiveness and were not just a function of F.Sv.

The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing (디스크 받침용 고무패드의 거동 및 강성추정)

  • Cho, Sung-Chul;Choi, Eun-Soo;Park, Joo-Nam;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF