• Title/Summary/Keyword: vertical beams

Search Result 257, Processing Time 0.028 seconds

Application of a Modular Multi-Gaussian Beam Model to Ultrasonic Wave Propagation with Multiple Interfaces

  • Jeong, Hyun-Jo;Park, Moon-Cheol;Schmerr Lester W.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.163-170
    • /
    • 2005
  • A modular Gaussian beam model is developed to simulate some ultrasonic testing configurations where multiple interfaces are involved. A general formulation is given in a modular matrix form to represent the Gaussian beam propagation with multiple interfaces. The ultrasonic transducer fields are modeled by a multi-Gaussian beam model which is formed by superposing 10 single Gaussian beams. The proposed model, referred to as "MMGB" (modular multi-Gaussian beam) model, is then applied to a typical contact and angle beam testing configuration to predict the output signal reflected from the corner of a vertical crack. The resulting expressions given in a modular matrix form are implemented in a personal computer using the MATLAB program. Simulation results are presented and compared with available experimental results.

A study on the Adaptation of Traditional Interior Elements in Modern House (전통주택 실내구성요소의 현대적 계승사례에 관한연구 -월간잡지에 나타난 주거공간을 중심으로-)

  • 오혜경
    • Journal of Families and Better Life
    • /
    • v.16 no.4
    • /
    • pp.167-182
    • /
    • 1998
  • The purpose of this study was to investigate actual condition of the modern adaptation of interior elements (wall floor ceiling door & window) in traditional house. The examined objects were 316 pictures of residential interior spaces from the 5 different monthly magazines between Jan. 1993 to Dec. 1997 The results of this study were as follows; 1. Mostly they were either parital adaptation from the original or partially transformed adaptation rather than entire adaptation of the original 2. Of the traditional interior elements adapted in residential space only specific elements were being adapted. For example. partial adaptation from the original were oiled paper flooring(Jangpan) rice papered wall (Hanji) a ceiling finish that left the rafters and beams exposed (Yondunt-chonjang) and window or door frame which is vertical lattices accented with horizontal lattices grouped into three sections(Ttisal-mun)And partially transformed adaptation were wood flooring(Chang-maru) rice apered wall(Hanji) Yondung-chonjang wind or door frame of Wan character(Wanja-mum) 3. In regard to space the mostly adapted spaces were bedrooms rather than living or dining rooms.

  • PDF

Temperature variation in steel beams subjected to thermal loads

  • Abid, Sallal R.
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.819-835
    • /
    • 2020
  • The effects of atmospheric thermal loads on the response of structural elements that are exposed to open environments have been recognized by research works and design specifications. The main source of atmospheric heat is solar radiation, which dominates the variation of the temperature of air, earth surface and all exposed objects. The temperature distribution along the depth of steel members may differ with the geometry configuration, which means that the different-configuration steel members may suffer different thermally induced strains and stresses. In this research, an experimental steel beam was instrumented with many thermocouples in addition to other sensors. Surface temperatures, air temperature, solar radiation and wind speed measurements were recorded continuously for 21 summer days. Based on a finite element thermal analysis, which was verified using the experimental records, several parametric studies were directed to investigate the effect of the geometrical parameters of AISC standard steel sections on their thermal response. The results showed that the overall size of the beam, its depth and the thickness of its elements are of significant effect on vertical temperature distributions and temperature differences.

Slope variation effect on large deflection of compliant beam using analytical approach

  • Khavaji, A.;Ganji, D.D.;Roshan, N.;Moheimani, R.;Hatami, M.;Hasanpour, A.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.405-416
    • /
    • 2012
  • In this study the investigation of large deflections subject in compliant mechanisms is presented using homotopy perturbation method (HPM). The main purpose is to propose a convenient method of solution for the large deflection problem in compliant mechanisms in order to overcome the difficulty and complexity of conventional methods, as well as for the purpose of mathematical modeling and optimization. For simplicity, a cantilever beam of linear elastic material under horizontal, vertical and bending moment end point load is considered. The results show that the applied method is very accurate and capable for cantilever beams and can be used for a large category of practical problems for the aim of optimization. Also the consequence of effective parameters on the large deflection is analyzed and presented.

Torsional and Flexural Behavior Characteristics of Symmetric Pier Copping Beam (대칭형 교각 코핑부 보의 비틀림 및 휨 거동 특성)

  • Kwon, Min-Ho;Jung, Hee-Hyo;Kim, Jin-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.107-114
    • /
    • 2007
  • The main aim of this study was to evaluate the bending and torsional behaviors of representative regular type cap beams in elevated guideway structures. A1/2 scale model copping beam, excluding the column portion, was designed, constructed, and tested. The copping beam was subjected to horizontal monotonic and cyclic loads with a constant vertical load over the loading stage. The damage was very much dominated by torsion. Experiment results showed that the spiral confinement in the beam helped to restrain the opening of torsional cracks in the column zone. Hence, the torsional strength of the cap beam contributesgreatly to the confinement conditions of the column.

Three-dimensional analysis of stress and strain transmission through line joints of spatial linkage of plates

  • Rosenhouse, G.;Rutenberg, A.;Goldfarb, Y.R.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.11-23
    • /
    • 1995
  • The examined model consists of two substructures linked by a right angle rigid line joint. One element is a wall loaded externally along its upper edge by an uneven vertical load. The other element, defined as a plate, is not loaded. Stresses and displacements in the vicinity of the joint are analysed, considering the lateral distribution which leads to three-dimensional effects. The proposed solution combines classical approach with numerical means, using appropriate stress distribution polynomial functions along the joint. Space structure constructions supply cases of interest.

A robust identification of single crack location and size only based on pulsations of the cracked system

  • Sinou, Jean-Jacques
    • Structural Engineering and Mechanics
    • /
    • v.25 no.6
    • /
    • pp.691-716
    • /
    • 2007
  • The purpose of the present work is to establish a method for predicting the location and depth of a crack in a circular cross section beam by only considering the frequencies of the cracked beam. An accurate knowledge of the material properties is not required. The crack location and size is identified by finding the point of intersection of pulsation ratio contour lines of lower vertical and horizontal modes. This process is presented and numerically validated in the case of a simply supported beam with various crack locations and sizes. If the beam has structural symmetry, the identification of crack location is performed by adding an off-center placed mass to the simply supported beam. In order to avoid worse diagnostic, it was demonstrated that a robust identification of crack size and location is possible if two tests are undertaken by adding the mass at the left and then right end of the simply supported beam. Finally, the pulsation ratio contour lines method is generalized in order to be extended to the case of rectangular cross section beams or more complex structures.

Deformation of multi-storey flat slabs, a site investigation

  • Tovi, Shivan;Goodchild, Charles;B-Jahromi, Ali
    • Advances in concrete construction
    • /
    • v.5 no.1
    • /
    • pp.49-63
    • /
    • 2017
  • Traditional reinforced concrete slabs and beams are widely used for building. The use of flat slab structures gives advantages over traditional reinforced concrete building in terms of design flexibility, easier formwork and use of space and shorter building time. Deflection of the slab plays a critical role on the design and service life of building components; however, there is no recent research to explore actual deformation of concrete slab despite various advancements within the design codes and construction technology. This experimental study adopts the Hydrostatic Levelling Cells method for monitoring the deformation of a multi-storey building with flat slabs. In addition, this research presents and discusses the experimental results for the vertical deformation.

Concurrent operation of round beam and flat beam in a low-emittance storage ring

  • J. Lee;S. Ahn;J. Ko;B. Oh;G. Jang;Y.D. Yoon;S. Shin;J.-H.Kim;M. Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3866-3873
    • /
    • 2023
  • In 4th-generation storage rings, whether to operate the beam as round or flat is a critical question. A round beam has equal horizontal and vertical emittances, and is an efficient solution to reduce strong intra-beam scattering effects and lengthen the Touschek lifetimes, but a flat beam produces a brighter photon beam than a round beam. To provide both beams concurrently rather than bifurcating the beam time, this paper presents the exploitation of beam dynamics and the cutting-edge fast pulser that supports concurrent operation of round beam and flat beam.

Effects of Flexural Rigidity of Center Tower in Four-Span Suspension Bridges (4경간 현수교에서의 중앙주탑 휨강성의 영향)

  • Gwon, Sun-Gil;Yoo, Hoon;Choi, Dong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.49-60
    • /
    • 2014
  • For simple and accurate analysis for behaviors of multi-span suspension bridges which are expected to be frequently constructed as strait-crossing bridges, the deflection theory as the peculiar theory of a suspension bridge can be applied. This paper performs a structural analysis for four-span suspension bridges using the deflection theory. Simply-supported beams with tension are used for girders and the deflections of the beams due to the vertical loads and moments at supports are calculated. The calculation is performed iteratively until the deflections satisfy the compatibility equations of cables. The results of the deflection theory analysis considering tower rigidity are compared with those of the finite element analysis for verification. Importance of the tower rigidity for four-span suspension bridges is confirmed using various compatibility equations of the cable due to variation of the constraint conditions between main cable and top of towers. In addition, the simple parametric analysis for variation of the center tower rigidity is performed.