DOI QR코드

DOI QR Code

Concurrent operation of round beam and flat beam in a low-emittance storage ring

  • J. Lee (Pohang Accelerator Laboratory) ;
  • S. Ahn (Pohang Accelerator Laboratory) ;
  • J. Ko (Department of Accelerator Science, Korea University) ;
  • B. Oh (Department of Accelerator Science, Korea University) ;
  • G. Jang (Pohang Accelerator Laboratory) ;
  • Y.D. Yoon (Pohang Accelerator Laboratory) ;
  • S. Shin (Department of Accelerator Science, Korea University) ;
  • J.-H.Kim (Ulsan National Institute of Science and Technology) ;
  • M. Chung (Ulsan National Institute of Science and Technology)
  • Received : 2022.10.07
  • Accepted : 2023.07.02
  • Published : 2023.10.25

Abstract

In 4th-generation storage rings, whether to operate the beam as round or flat is a critical question. A round beam has equal horizontal and vertical emittances, and is an efficient solution to reduce strong intra-beam scattering effects and lengthen the Touschek lifetimes, but a flat beam produces a brighter photon beam than a round beam. To provide both beams concurrently rather than bifurcating the beam time, this paper presents the exploitation of beam dynamics and the cutting-edge fast pulser that supports concurrent operation of round beam and flat beam.

Keywords

Acknowledgement

We would like to thank Michael Borland for providing helpful information and many useful discussions through elegant forum. This research was supported in part by the Korean Government MSIT (Multipurpose Synchrotron Radiation Construction Project) and also by Basic Science Research Program through the National Research Foundation of Korea (NRF-2019R1A2C1004862).

References

  1. MAX IV Conceptual Design Report, http://www.maxlab.lu.se/maxlab/max4/index.html.
  2. L. Liu, N. Milas, A.H.C. Mukai, X.R. Resende, A.R.D. Rodriguet, F.H. Sa, Proc. of IPAC (2013) 1874.
  3. ESRF-EBS introduction. http://indico.psi.ch/conferenceDisplay.py?confId=5589.
  4. APS Upgrade introduction. https://www1.aps.anl.gov/aps-upgrade.
  5. C. Steier, et al., Proc. of IPAC (2016) 2956.
  6. I. Agapov, et al., Proc. of IPAC (2019) 1404.
  7. HEPS introduction. http://english.ihep.cas.cn/heps/.
  8. Peter Kuske, Review of Methods to Produce Round Beams, Worksshop on Round Beams, SOLEIL, Paris, 2017.
  9. M. Aiba, M.P. Ehrlichman, A. Streun, Round beam operation in electron storage rings and generalisation of Mobius accelerator, Proc. of IPAC (2017) 1716.
  10. Xiaobiao Huang, et al., Low alpha mode for SPEAR3, Proc. of PAC07, pp. 1308.
  11. David Newton, Wolski Andy, Design of Electron Storage and Damping Rings USPAS, June 2013. Fort Collins, Colorado.
  12. H. Wiedemann, Particle Accelerator Physics, Springer, New York, 2015.
  13. Chongchong Du, Jiuqing Wang, Daheng Ji, Saike Tian, Studies of round beam at HEPS storage ring by driving linear difference coupling resonance, Nucl. Instrum. Methods A 976 (2020), 164264.
  14. F. Willeke, G. Ripken, Physics of particle accelerators, in: Melvin Month and Margaret Dienes, AIP Conf. Proc. No. 184, AIP, New York, 1989.
  15. F. Willeke, G. Ripken, On the impact of linear coupling on nonlinear dynamics, Part. Accel. 27 (1990) 203e208.
  16. G.S. Jang, S. Shin, M. Yoon, J. Ko, Dae Yoon Young, J. Lee, B.-H. Oh, Nucl. Instrum. Methods A 1034 (2022), 166779.
  17. Advanced photon source upgrade project final design report. https://publications.anl.gov/anlpubs/2019/07/153666.pdf.
  18. ESRF-EBS: the extremely brilliant source project. http://indico.psi.ch/conferenceDisplay.py?confId=5589.
  19. M. Borland, Elegant: a flexible SDDS-compliant code for accelerator simulation, Proc. ICAP-2000 LS-287 (2000).
  20. A. Chao, Handbook of Accelerator Physics and Engineering, World Scientific, Singapore, 2013.
  21. Tong Zhang, Xiaobiao Huang, Off-axis injection for storage rings with full coupling, Phys. Rev. Accel. and Beams 21 (2018), 084002.
  22. Masamitsu Aiba, Michael Ehrlichman, Andreas Streun, Round beam operation in electron storage rings and generalisation of Mobius accelerator, Proc. of IPAC (2015) 1716.