• Title/Summary/Keyword: vertical arrays

Search Result 58, Processing Time 0.032 seconds

Empirical Correlation for Natural Convective Heat Transfer around Microfin Arrays (마이크로 휜 배열 주위의 자연대류 열전달에 관한 실험 관계식)

  • Kim, Jin-Sub;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2055-2060
    • /
    • 2007
  • Microfin arrays with fin heights of 100 ${\mu}$m and 200 ${\mu}$m and six different spacings from 30 ${\mu}m$to 360 ${\mu}m$ are fabricated using the DRIE process. Natural convective heat transfer around the microfin arrays on both vertical and horizontal surfaces is experimentally examined. It turns out that the orientation effect of microfin arrays is negligible compared with macrofin arrays. The obtained heat transfer coefficients are compared with the existing heat transfer correlation for the macrofin arrays. It is concluded that the existing macrocorrelation is no longer valid for the microfin arrays. Relevant empirical correlations for microfin arrays on the vertical and horizontal surfaces are presented based on the present experimental data.

  • PDF

Numerical Investigation of Multi-body Wave Energy Converters' Configuration

  • Heo, Kyeonguk;Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.132-142
    • /
    • 2022
  • We investigate the performance of multi-body wave energy converters (WECs). This investigation considers multiple scattering of water waves by the buoys of a WEC under the generalized mode approach. Predominantly, the effect of a WEC's configuration on its energy extraction is studied in this research. First, single-row terminator and single-column attenuator arrays of vertical cylinders have been studied. The performance of these attenuator arrays shows that the wall effect induced by the periodic buoys influences the wave propagation and energy extraction in these WECs. Further studies show that a single-row terminator array of vertical cylinders performs better than the corresponding single-column attenuator array. Subsequently, multi-row terminator arrays of vertical cylinders are investigated by conducting a parametric study. This parametric study shows that the hydrodynamic property of three resonance phenomena makes energy extraction efficiency drop down, and the magnitude of energy extracted oscillates between the resonance points in these WECs. Finally, a 4×8 terminator array of vertical cylinders is studied to determine the effect of various dx (x-directional distance between adjacent rows) within this WEC on its performance. In particular, this study enforces at least two equal dx values within the 4×8 terminator array of vertical cylinders. It shows that a small value of this dx leads to better energy extraction efficiency in some of these various dx arrays than that of a corresponding regular array with the same dx.

System identification of soil behavior from vertical seismic arrays

  • Glaser, Steven D.;Ni, Sheng-Huoo;Ko, Chi-Chih
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.727-740
    • /
    • 2008
  • A down hole vertical seismic array is a sequence of instruments installed at various depths in the earth to record the ground motion at multiple points during an earthquake. Numerous studies demonstrate the unique utility of vertical seismic arrays for studying in situ site response and soil behavior. Examples are given of analyses made at two sites to show the value of data from vertical seismic arrays. The sites examined are the Lotung, Taiwan SMART1 array and a new site installed at Jingliao, Taiwan. Details of the installation of the Jingliao array are given. ARX models are theoretically the correct process models for vertical wave propagation in the layered earth, and are used to linearly map deeper sensor input signals to shallower sensor output signals. An example of Event 16 at the Lotung array is given. This same data, when examined in detail with a Bayesian inference model, can also be explained by nonlinear filters yielding commonly accepted soil degradation curves. Results from applying an ARMAX model to data from the Jingliao vertical seismic array are presented. Estimates of inter-transducer soil increment resonant frequency, shear modulus, and damping ratio are presented. The shear modulus varied from 50 to 150 MPa, and damping ratio between 8% and 15%. A new hardware monitoring system - TerraScope - is an affordable 4-D down-hole seismic monitoring system based on independent, microprocessor-controlled sensor Pods. The Pods are nominally 50 mm in diameter, and about 120 mm long. An internal 16-bit micro-controller oversees all aspects of instrumentation, eight programmable gain amplifiers, and local signal storage.

Vertically-Aligned Nanowire Arrays for Cellular Interfaces

  • Kim, Seong-Min;Lee, Se-Yeong;Gang, Dong-Hui;Yun, Myeong-Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.90.2-90.2
    • /
    • 2013
  • Vertically-aligned silicon nanostructure arrays (SNAs) have been drawing much attention due to their useful electrical properties, large surface area, and quantum confinement effect. SNAs are typically fabricated by chemical vapor deposition, reactive ion etching, or wet chemical etching. Recently, metal-assisted chemical etching process, which is relatively simple and cost-effective, in combination with nanosphere lithography was recently demonstrated for vertical SNA fabrication with controlled SNA diameters, lengths, and densities. However, this method exhibits limitations in terms of large-area preparation of unperiodic nanostructures and SNA geometry tuning independent of inter-structure separation. In this work, we introduced the layerby- layer deposition of polyelectrolytes for holding uniformly dispersed polystyrene beads as mask and demonstrated the fabrication of well-dispersed vertical SNAs with controlled geometric parameters on large substrates. Additionally, we present a new means of building in vitro neuronal networks using vertical nanowire arrays. Primary culture of rat hippocampal neurons were deposited on the bare and conducting polymer-coated SNAs and maintained for several weeks while their viability remains for several weeks. Combined with the recently-developed transfection method via nanowire internalization, the patterned vertical nanostructures will contribute to understanding how synaptic connectivity and site-specific perturbation will affect global neuronal network function in an extant in vitro neuronal circuit.

  • PDF

Comparison of electrode arrays for earth resistivity image reconstruction of vertical multi layers (수직 다층구조의 대지저항률 영상복원을 위한 전극배열법의 비교)

  • Boo, Chang-Jin;Kim, Ho-Chan;Kang, Min-Jae
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.149-155
    • /
    • 2018
  • In this paper, we used ET(Electrical Tomography) for earth resistivity image reconstruction of vertical multi layer underground model. The earth resistivity is analyzed generally as the parallel multi-layer model, however possibly there happens vertical layer model. Here to find the best electrode array in case of vertical layer underground model, Wenner, Schlumberger, and Dipole-dipole electrode arrays, which are well known electrode arrays used in ET, have been tested. And Gauss-Newton algorithm is used in ET inversion. RMS error analysis shows that Wenner electrode array is best in imaging.

An Efficient Separable Weighting Method for Sonar Systems with Non-Separable Planar Arrays (소나시스템 비분리 평면센서배열의 효율적인 분리 가중치 기법)

  • Do, Dae-Won;Kim, Woo-Sik;Lee, Dong-Hun;Kim, Hyung-Moon;Choi, Sang-Moon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.208-217
    • /
    • 2013
  • When a beamforming can be processed separately in horizontal and vertical directions with the planar arrays used in sonar systems, there are several merits such as that practically reduce the required computations and volumes. However, the common planar arrays used in sonar systems are generally non-separable, so the beamforming with separable weighting results in the differences between the desired beam characteristics and the resultant beam characteristics. In this paper, we propose a new separable weighting method which can achieve the wanted beam characteristics by using the separable weights in horizontal and vertical directions for the non-separable planar arrays. In order to achieve the wanted beam characteristics, the proposed method minimizes the differences between the desired weights and the resultant weights based on the number of effective sensors in horizontal and vertical directions of the planar arrays.

The Study on an Electric Noise Effect using Physical Scale Modeling (축소모형 실험을 이용한 전기적 잡음에 관한연구)

  • Yun, Jeum-Dong;Song, Young-Su;So, Kyung-Mok
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.297-302
    • /
    • 2007
  • Recently, electrical resistivity survey is used in the various fields and applied to urban area with many electrical noises. Therefor it's necessary to observe the electrical noise effect of the geological structure. The physical scale modeling was conducted for measuring the electric noise effect of the two geological models at various distances, depths and diameters of the electric noise objects. The results are as following. 1. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various separated distances to the measurement line was disappeared at a half distance measurement line length regardless of electrode arrays. 2. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various depths was disappeared at 4unit apart from the measurement line regardless of electrode arrays. 3. When conductive noise object was vertical to the strike of geological structure and moved to the strike direction, the effect of conductive noise object at various diameters was disappeared at 4unit apart from the measurement line regardless of electrode arrays.

  • PDF

Effectiveness of the Electrode Arrays for Delineating 2-D Subsurface Structure (2차원 지하구조 규명을 위한 전극배열의 효율성)

  • Yoon, Jong-Ryeol;Lee, Kiehwa
    • Economic and Environmental Geology
    • /
    • v.29 no.3
    • /
    • pp.345-355
    • /
    • 1996
  • The effectiveness of various electrode configurations in horizontal mappings and 1-D inversions of vertical sounding data for delineating 2-D structures was studied. Apparent resistivity values of three point, dipole-dipole, Wenner, and Schlumberger mappings were simulated for such structures as vertical dyke, tabular prism, buried vertical fault, ramp and complex structure by finite difference method (FDM) and they were compared with each other. Also 2-D cross sections for three structures obtained by interpolation of 1-D inverted sounding data in terms of three layers were compared for Schlumberger and Wenner arrays. On these cross sections, horizontal and vertical resistivity interfaces of the 2-D structures are revealed relatively clearly. Apparent resistivity curves of Schlumberger mapping show vertical resistivity discontinuities very well. On the whole, Schlumberger array is superior to the other arrays in electric sounding as well as mapping. This study clearly indicates that interpretations of 2-D structures based on 1-D inversion are possible.

  • PDF

New Fabrication Process of Vertical-Type Organic TFTs for High-Current Drivers

  • Kudo, Kazuhiro;Nakamura, Masakazu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.307-309
    • /
    • 2009
  • We have fabricated vertical-type organic transistors (static induction transistors; SITs) with built-in nano-triode arrays formed in parallel by a colloidal-lithography technique. Using this technique, we could fabricate a microstructure in a lateral direction within a large-scale organic device without relying on photolithography. The organic transistor showed low operating voltages, high current output, and large transconductance.

  • PDF

역에프형 구조를 이용한 RFID 리더기용 편파 및 공간 다이버시티 안테나 설계

  • Kim, Jong-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.191-192
    • /
    • 2006
  • An orthogonal antenna is presented for reader applications of radio frequency identification (RFID) at 433 MHz. The antenna is composed of two $1{\times}2$ sub-arrays orthogonally placed on a ground plane. Two different feeding networks are introduced to control horizontal and vertical radiation current flows for each sub-array, respectively. An inverted-F structure is used as a radiation element with vertical and horizontal currents flowing on the radiator, thereby obtaining two linear polarizations. Antenna gains are 3.71 and 3.43 dBi and isolation between the two input ports is less than 25dB.

  • PDF