• Title/Summary/Keyword: verbal collocation

Search Result 2, Processing Time 0.018 seconds

Verbal Collocation Extraction from Sejong Tagged Corpus (세종 말뭉치로부터 용언연어 추출)

  • Lee, Jeong-Tae;Cheon, Min-Ah;Kim, Jae-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.121-123
    • /
    • 2015
  • 연어는 둘 이상의 단어로 구성된 표현으로 연어에 속하는 개개의 단어의 의미로써 연어의 의미를 유추할 수 없다. 따라서 연어의 의미를 분석하거나 번역할 경우 개개의 단어보다는 연어 그 자체를 하나의 분석 단위로 간주하는 것이 훨씬 더 효과적이다. 이를 위해 본 논문에서는 통계기법을 활용하여 세종 말뭉치로 부터 용언연어의 추출 방법을 제시하고 그 성능을 평가한다. 연어 패턴과 통계 정보를 이용해서 연어를 추출한다. 평가를 위해서 연어 사전과 전문가의 주관적 평가를 동시에 수행했다.

  • PDF

Optimization of Transitive Verb-Objective Collocation Dictionary based on k-nearest Neighbor Learning (k-최근점 학습에 기반한 타동사-목적어 연어 사전의 최적화)

  • Kim, Yu-Seop;Zhang, Byoung-Tak;Kim, Yung-Taek
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.3
    • /
    • pp.302-313
    • /
    • 2000
  • In English-Korean machine translation, transitive verb-objective collocation is utilized for accurate translation of an English verbal phrase into Korean. This paper presents an algorithm for correct verb translation based on the k-nearest neighbor learning. The semantic distance is defined on the WordNet for the k-nearest neighbor learning. And we also present algorithms for automatic collocation dictionary optimization. The algorithms extract transitive verb-objective pairs as training examples from large corpora and minimize the examples, considering the tradeoff between translation accuracy and example size. Experiments show that these algorithms optimized collocation dictionary keeping about 90% accuracy for a verb 'build'.

  • PDF