• Title/Summary/Keyword: ventilation house

Search Result 302, Processing Time 0.029 seconds

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. I. Fluctuations of Temperature and Light Environment in the Multilayered Plastic House Grown Red Pepper (동계 Plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 I. 다중피복 고추육묘 시설내의 온도 및 광환경 영향)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.3 no.2
    • /
    • pp.106-118
    • /
    • 1994
  • This study was conducted to analyze the effects of fluctuations in temperature, light intensity and soil temperature on the growth of red pepper seedlings in the nonheated plastic houses with various number of layers and in the open field. Relationship between the optimal environment and the growth of seedlings was discussed, and the maximum and minimum outdoor temperatures in Kwangju area from 1941 to 1985 were analyzed. The results obtained were as follows; 1. The minimum temperature in tunnel with quadruple coverings of P. E. film from December 20 to February 25 was decreased to 5$^{\circ}C$ mostly, where the exposure to chilling temperature could not be avoided during this period. The maximum temperature was increased to 33$^{\circ}C$ mostly and 42$^{\circ}C$ in peak, where some ventilation was needed. 2. The diurnal differences of inside temperature, increasing with number of layers, were 16 to 38$^{\circ}C$, while those of outside temperature were 5 to 1$0^{\circ}C$. 3. The cold injury in the quadruple coverings during winter occurred all the times below 12$^{\circ}C$ and as many as 200 times over 3$0^{\circ}C$, while effectiveness of thermal insulation in the multilayered nonheating plastic houses were clearly proved. 4. The inside light intensity was markedly reduced with the increment of layers and the minimum light intensity fallen down below the light compensation point for the growth of red pepper plants regardless of the number of layers. 5. Until 10 a. m., the temperature in the daytime during December 20 to mid - February showed below 10 to 12$^{\circ}C$ which was the limiting temperature for the growth of red pepper seedlings. After 4 p. m., the light intensity was sharply reduced despite of the air temperature kept over 12$^{\circ}C$. Therefore, limiting factors for the growth of red pepper seedlings were the temperature before 10 a. m. and the light intensity after 4 p. m. 6. The minimum soil temperature in quadruple coverings showed around 1$0^{\circ}C$ where the physiological damage for red pepper seedlings might be occurred. 7. The minimum outdoor temperatures from 1941 to 1985 was -19.4$^{\circ}C$, observed in the 5th January.

  • PDF

A Survey on the Level of $NO_2$ Inside and Outside Urban Homes by Palmes Tube (Palmes tube를 이용한 도시 주택의 옥내외 $NO_2$ 농도에 관한 조사연구)

  • Kim, Yong-Won;Pae, Ki-Taek;Kim, Sung-Chun;Moon, Duck-Hwan;Lee, Jong-Tae;Kim, Joon-Youn
    • Journal of Preventive Medicine and Public Health
    • /
    • v.19 no.1 s.19
    • /
    • pp.31-44
    • /
    • 1986
  • For many years, $NO_2$ has been regarded as one of the elements among indoor air pollutants of urban homes, leading to increased public concerns on this gas. For the purpose of preparing the fundamental data for the evaluation and control of health effect relevant to $NO_2$ levels, authors measured the indoor (kitchen, living room, bed room) and outdoor $NO_2$ levels categorized by the type of house(apartment, detached dwelling) and cooking fuel(L.P.G., briquette) in the winter and summer, and surveyed the variables(kitchen ventilation, family size, parental smoking) may effect the indoor $NO_2$ levels. The level of $NO_2$ was measured by Palmes tube, and this survey was carried out at 110 homes in the Pusan area from October 1984 to September 1985. The obtained results were as follows: 1) The mean indoor and outdoor $NO_2$ level in winter and summer, respectively, was $0.029{\pm}0.012$ ppm and $0.022{\pm}0.012$ ppm in the kitchen, $0.022{\pm}0.009$ ppm and $0.018{\pm}0.010$ ppm in the living room, $0.017{\pm}0.008$ ppm and $0.016{\pm}0.010$ ppm in the bed room, and $0.021{\pm}0.007$ ppm and $0.016{\pm}0.007$ ppm outdoors. 2) In the category of the type of house and cooking fuel, the highest mean indoor and outdoor $NO_2$ level in the winter was in apartments using briquettes, and in the summer. the highest level was in apartments using L.P.G. 3) In the category of the type of house, the mean indoor and outdoor $NO_2$ level in the winter and summer was higher in the apartment group compared to detached dwelling. 4) In the category of the type of cooking fuel, the mean indoor and outdoor $NO_2$ level in the winter was higher in the briquette group, and in the summer, the L.P.G. group was higher. 5) In the category of the kitchen ventilation, family size, parental smoking and asthma attack history of children, there was an insignificant difference in the indoor $NO_2$ levels.

  • PDF

Study on Ventilation Efficiency of A Naturally Ventilated Broiler House-( I ) Summer Season (자연환기식 육계사내의 환기효율성 조사연구-( I )하절기)

  • 이인복;유병기;정문성;윤진하;전종길;김경원;성시흥
    • Journal of Animal Environmental Science
    • /
    • v.9 no.1
    • /
    • pp.9-18
    • /
    • 2003
  • Most of broiler houses in Korea have the trouble of environmental control such as suitability, stability, and uniformity of internal climate, resulting in serious stress on chickens. Accordingly, it is very urgent to develop optimum designs of naturally and mechanically ventilated broiler houses for Korean climate. In this study, the internal climates such as air temperature, humidity, dust, ammonia gas, and air velocity were measured at a naturally ventilated broiler house. The data were collected during summer season including local weather data. It was found that the difference between measured and optimum air temperatures was $14.0^{\circ}C$ in maximum during the summer time. The daily maximum range of internal averaged air temperature was found $10.5^{\circ}C$ while the uniformity was $5.2^{\circ}C$ in maximum. The maximum, average, and minimum internal averaged relative humidity were 89.3%, 73.7%, and 49.2%, respectively while locally measured were 95.1% and 47.2%, respectively in maximum and minimum. Considering Temperature-humidity index, during summer season, over 97% of totally rearing period was shown that counter plan is needed for thermal stress while it was very dangerous situation for 22% of the rearing period. The ammonia gas and dust concentrations were seriously affected by the broilers activity, growth level, and relative humidity.

  • PDF

Conducted to Verify the Effect of Chlorine Dioxide (ClO2) on Odor Reduction at a Commercial Swine Facility (이산화염소 가스분무에 의한 양돈장 악취저감 효과)

  • Song, J.I.;Jeon, J.H.;Park, K.H.;Yoo, Y.H.;Kim, D.H.
    • Journal of Animal Environmental Science
    • /
    • v.17 no.sup
    • /
    • pp.43-50
    • /
    • 2011
  • This study was conducted to verify the effect of chlorine dioxide ($ClO_2$) on odor reduction at a commercial swine facility consisting of a windowless piglet barn and a grower/fattening barn. The windowless piglet barn used a duct ventilation system. Air velocity at very below the upper duct was 4.53 m/s. Air velocity at the lower space around the living space of pigs in the grower/fattening barn was 0.26 m/s. $NH_3$ concentration was around 9ppm and less than 3 ppm before and after the $ClO_2$ spraying, respectively, which was over 70% reduction. There was no $H_2S$ detection. $NH_3$ concentrations measured in the windowless grower/fattening barn and at the exhausted air were 26 ppm and 11ppm, respectively. $NH_3$ concentration at a biocurtain outside was less than 1 ppm. Hence, $ClO_2$ spraying at windowless barns was effectively decreased malodor such as $NH_3$.

A Study on the Concentrations of Indoor Radon for Houses in Chungcheongbuk-do Province, Korea (충청북도 일부지역 내 주택 실내 라돈 농도)

  • Ji, Hyun-A;Yoo, Ju-Hee;Kim, Ga-Hyun;Won, Soo Ran;Kim, Seonhong;Lee, Jeongsub
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.668-674
    • /
    • 2019
  • Objectives: Modern people spend most of their day indoors. As the health impact of radon becomes an issue, public interest also has been growing. The primary route of potential human exposure to radon is inhalation. Long-term exposure to high levels of radon increases the risk of developing lung cancer. Radon exposure is known to be the second-leading cause of lung cancer, following tobacco smoke. This study measures the indoor radon concentrations in detached houses in area A of Chungcheongbuk-do Province considering the construction year, cracks in the houses, the location of installed detectors, and seasonal effects. Methods: The survey was conducted from September 2017 to April 2018 on 1,872 private households located in selected areas in northern Chungcheongbuk-do Province to figure out the year of building construction and the location of detector installed and identify the factors which affect radon concentrations in the air within the building. Radon was measured using a manual alpha track detector (Raduet, Hungary) with a sampling period of longer than 90 days. Results: Indoor radon concentrations in winter within area A was surveyed to be 168.3±193.3 Bq/㎥. There was more than a 2.3 times difference between buildings built before 1979 and those built after 2010. The concentration reached 195.4±221.9 Bq/㎥ for buildings with fractures and 167.2±192.4 Bq/㎥ for buildings without fractures. It was found that detectors installed in household areas with windows exhibited a lower concentration than those installed in concealed spaces. Conclusion: High concentrations of indoor radon were shown when there was a crack in the house. Also, ventilation seems to significantly affect radon concentrations because when the location of the detector in the installed site was near windows compared to an enclosed area, radon concentration variation increased. Therefore, it is considered that radon concentration is lower in summer because natural ventilation occurs more often than in winter.

Estimation of Particulate Matter and Ammonia Emission Factors for Mechanically-Ventilated Pig Houses (강제환기식 양돈시설의 암모니아 및 미세먼지 배출계수 산정)

  • Park, Jinseon;Jeong, Hanna;Hong, Se-Woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.6
    • /
    • pp.33-42
    • /
    • 2020
  • Emission factors for ammonia and particulate matters (PMs) from livestock buildings are of increasing importance in view of the environmental protection. While the existing emission factors were determined based on the emission inventory of other countries, in situ measurement of emission factors is required to construct an accurate emission inventory for Korea. This study is to report measurements of ammonia and PMs emissions from mechanically-ventilated pig houses, which are common types of pig barns in Korea. Ventilation rates and concentrations of ammonia and PMs were measured at the ventilation outlets of a weaner unit, a growing pig unit and a fattening pig unit to calculated the emission factors. The PMs emission was characterized with different aerodynamic diameters (PM2.5, PM10, and total suspended particulates (TSP)). The measured ammonia emission factors for weaners, growing pigs and fattening pigs were 0.225, 0.869 and 1.679 kg animal-1 yr-1, respectively, showing linear increase with pigs' age. The PMs emission factors for three growing stages were 0.023, 0.237 and 0.241 kg animal-1 yr-1, respectively for TSP, 0.017, 0.072 and 0.223 kg animal-1 yr-1, respectively for PM10, and 0.011, 0.016 and 0.151 kg animal-1 yr-1, respectively for PM2.5. PMs emissions were increased with pigs' age due to increasing feed supply and animal movement. The measured emission factors were smaller than those of the existing emission inventory indicating that the existing ones overestimate the emissions from pig buildings and also suggesting that long-term in situ monitoring at various livestock buildings is required to construct the accurate emission inventory.

A Study on the Wind Power Generation Using Vertical Exhaust Air Duct of the High-Rise Apartments (초고층 공동주택의 주방.욕실 배기 풍속을 풍력발전에 활용하는 방안)

  • Lee, Yong-Ho;Kim, Seong-Yong;Hwang, Jung-Ha;Park, Jin-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.1-10
    • /
    • 2012
  • The purpose of this study was to promote the utilization of wind velocity of kitchen and bathroom exhaust ducts for wind power generation in high-rise apartments. The research content can be summarized as follows: 1) Nine high-rise apartments were examined for the installation of kitchen and bathroom exhaust ducts located in the pipe shaft (PS) section. After selecting simulation candidates, a simulation was performed with the STAR-CCM+ Ver 5.06 program. 2) Of nine high-rise apartments, seven had kitchen and bathroom exhaust ducts, whose cross section was in the range of $0.16m^2{\sim}0.4m^2$. The area ratio between the exhaust ducts and PS section (cross section of exhaust duct/area of PS section ${\times}$ 100) was on average 3.2%. 3) The simulation results were analyzed. As a result, the smaller cross section kitchen and bathroom exhaust ducts had, the more advantages there were for increasing exhaust wind velocity. If an out air inlet duct is installed to the old kitchen and bathroom exhaust ducts, it will increase exhaust wind velocity by 3.01~3.98m/s and contribute to the proper wind velocity level (3.0m/s). 4) When the simultaneous usage rate between the kitchen and bathroom exhaust fan increased from 20% to 60%, exhaust wind velocity increased. The "entire house holds" condition for exhaust fan operation provided more even exhaust wind velocity than the "some house holds" condition. 5) Exhaust wind velocity increased in the order of amplified (T-3), induced (T-2) and vertical (T-1) top of kitchen and bathroom exhaust ducts. Of them, the amplified type (T-3) was under the least influence of external wind velocity and thus the most proper for kitchen and bathroom exhaust duct tops.

Comparison on the Time series of Housing Viewpoint of University Student (대학생 주거관의 시계열적 비교)

Housing Plans of ChoSun-Tribe Immigrant Workers in Korea - An Analysis of Housing and Domestic Living of ChoSun-Tribe in Korea and China - (재한(在韓) 조선족(朝鮮族) 이주 노동자를 위한 주거 계획 - 한국과 중국에 거주하는 조선족의 주거 및 주생활에 대한 고찰 -)

  • Lee, Young-Shim;Choi, Jung-Shin
    • Journal of the Korean Home Economics Association
    • /
    • v.45 no.9
    • /
    • pp.15-26
    • /
    • 2007
  • Immigrant workers in Korea who have a multi-cultural background are increasing a need is arising to support them with housing that considers their housing culture. The purpose of this study is to gather information to formulate a plan of ChoSun-Tribe Immigrant Workers in Korea. For this purpose, we investigated to the usage of domestic space and the seating style of ChoSun-Tribe members in China and Korea. Ethnographic research with a questionnaire was used to analyze 16 households in China and 17 in Korea. The study results were as follows. 1. Most of the ChoSun-Tribe members in China and Korea thought that the kitchen had to be separated from other areas and also they wanted to have a large kitchen in which they can work comfortably. 2. ChoSun-Tribe members in China used a bathroom as a laundry normally while and ChoSun-Tribe members in China and Korea didn't think that a bathtub was indispensable in the bathroom. 3. The most uncomfortable feature for ChoSun-Tribe members in Korea was having to use a toilet outside so a toilet should be considered inside of the house. 4. ChoSun-Tribe members in China and Korea were accustomed to sitting on the floor for their living usually and ChoSun-Tribe members in China used the living room as a multi-purpose room for the family. 5. A modified Ondol system using water pipes under the floor was gaining popularity in China and was the most desirable heating system for ChoSun-Tribe members in China and Korea also. 6. ChoSun-Tribe members in China and Korea all took off their shoes inside of the house for hygienic reasons so the space for taking on-off shoes was indispensable. 7. Housing for ChoSun-Tribe immigrant workers in Korea needs to be planned with a good environment lots of sunshine and better ventilation.

An Investigation of Emission of Particulate Matters and Ammonia in Comparison with Animal Activity in Swine Barns (양돈사 내 동물 활동도에 따른 암모니아 및 미세먼지 배출농도 특성 분석)

  • Park, Jinseon;Jeong, Hanna;Lee, Se Yeon;Choi, Lak Yeong;Hong, Se-woon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.117-129
    • /
    • 2021
  • The movement of animals is one of the primary factors that influence the variation of livestock emissions. This study evaluated the relationship between animal activity and three major emissions, PM10, PM2.5, and ammonia gas, in weaning, growing, and fattening pig houses through continuous monitoring of the animal activity. The movement score of animals was quantified by the developed image analysis algorithm using 10-second video clips taken in the pig houses. The calculated movement scores were validated by comparison with six activity levels graded by an expert group. A comparison between PMs measurement and the movement scores demonstrated that an increase of the PMs concentrations was obviously followed by increased movement scores, for example, when feeding started. The PM10 concentrations were more affected by the animal activity compared to the PM2.5 concentrations, which were related to the inflow of external PM2.5 due to ventilation. The PM10 concentrations in the fattening house were 1.3 times higher than those in the weaning house because of the size of pigs while weaning pigs were more active and moved frequently compared to fattening pigs showing 2.45 times higher movement scores. The results also indicated that indoor ammonia concentration was not significantly influenced by animal activity. This study is significant in the sense that it could provide realistic emission factors of pig farms considering animal's daily activity levels if further monitoring is carried out continuously.