• Title/Summary/Keyword: veneering porcelain

Search Result 57, Processing Time 0.023 seconds

Effect of different veneering techniques on the fracture strength of metal and zirconia frameworks

  • Turk, Ayse Gozde;Ulusoy, Mubin;Yuce, Mert;Akin, Hakan
    • The Journal of Advanced Prosthodontics
    • /
    • v.7 no.6
    • /
    • pp.454-459
    • /
    • 2015
  • PURPOSE. To determine whether the fracture strengths and failure types differed between metal and zirconia frameworks veneered with pressable or layering ceramics. MATERIALS AND METHODS. A phantom molar tooth was prepared and duplicated in 40 cobalt-chromium abutments. Twenty metal (IPS d.SIGN 15, Ivoclar, Vivadent, Schaan, Liechtenstein) and 20 zirconia (IPS e.max ZirCAD, Ivoclar) frameworks were fabricated on the abutments. Each framework group was randomly divided into 2 subgroups according to the veneering material: pressable and layering ceramics (n=10). Forty molar crowns were fabricated, cemented onto the corresponding abutments and then thermocycled ($5-55^{\circ}C$, 10,000 cycles). A load was applied in a universal testing machine until a fracture occurred on the crowns. In addition, failure types were examined using a stereomicroscope. Fracture load data were analyzed using one-way ANOVA and Tukey HSD post-hoc tests at a significance level of 0.05. RESULTS. The highest strength value was seen in metal-pressable (MP) group, whereas zirconia-pressable (ZP) group exhibited the lowest one. Moreover, group MP showed significantly higher fracture loads than group ZP (P=.015) and zirconia-layering (ZL) (P=.038) group. No significant difference in fracture strength was detected between groups MP and ML, and groups ZP and ZL (P>.05). Predominant fracture types were cohesive for metal groups and adhesive for zirconia groups. CONCLUSION. Fracture strength of a restoration with a metal or a zirconia framework was independent of the veneering techniques. However, the pressing technique over metal frameworks resisted significantly higher fracture loads than zirconia frameworks.

Evaluation of the color reproducibility of all-ceramic restorations fabricated by the digital veneering method

  • Kim, Jae-Hong;Kim, Ki-Baek;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.2
    • /
    • pp.71-78
    • /
    • 2014
  • PURPOSE. The objective of this study was to evaluate the clinical acceptability of all-ceramic crowns fabricated by the digital veneering method vis-$\grave{a}$-vis the traditional method. MATERIALS AND METHODS. Zirconia specimens manufactures by two different manufacturing method, conventional vs digital veneering, with three different thickness (0.3 mm, 0.5 mm, 0.7 mm) were prepared for analysis. Color measurement was performed using a spectrophotometer for the prepared specimens. The differences in shade in relation to the build-up method were calculated by quantifying ${\Delta}E^*$ (mean color difference), with the use of color difference equations representing the distance from the measured values $L^*$, $a^*$, and $b^*$, to the three-dimensional space of two colors. Two-way analysis of variance (ANOVA) combined with a Tukey multiple-range test was used to analyze the data (${\alpha}$=0.05). RESULTS. In comparing means and standard deviations of $L^*$, $a^*$*, and $b^*$ color values there was no significant difference by the manufacturing method and zirconia core thickness according to a two-way ANOVA. The color differences between two manufacturing methods were in a clinically acceptable range less than or equal to 3.7 in all the specimens. CONCLUSION. Based on the results of this study, a carefully consideration is necessary while selecting upper porcelain materials, even if it is performed on a small scale. However, because the color reproducibility of the digital veneering system was within the clinically acceptable range when comparing with conventional layering system, it was possible to estimate the possibility of successful aesthetic prostheses in the latest technology.

THE SHEAR BOND STRENGTH BETWEEN DICOR AND SEVERAL VENEERING PORCELAINS (Dicor와 수종 전장도재간의 전단결합강도)

  • Ryoo, Kyung-Hee;Lee, Sun-Hyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.165-179
    • /
    • 1993
  • Dicor has not been prescribed routinely, in spite of many advantages, because of esthetic limitations by excessive translucency and external shading. In an attempt to solve these problems, the technique of veneering Dicor by aluminous poreclain has been used and recently Dicor Plus system was developed. The purpose of this study was to evaluate the compatibility between Dicor and several veneering porcelains by measuring the shear bond strength and observing the failure mode and interface appearance with SEM. Total 55 Dicor disks(10.0mm diam. X 3.0mm thickness) were fabricated by lost wax technique and divided into five groups of 11. Veneering porcelains such as Dicor Plus, Vitadur Alpha, Vitadur N, Vivodent, and Ceramco II were built up over the center of the treated Dicor surface using paper tube(5.0mm diam. X 4.0mm height) and fired according to the manufacturesr’instructions. A representative sample from each group was completely embedded in epoxy resin and crosssectioned, and remaining 50 samples were embedded in epoxy resin with the bonded area perpendicular to table base. The shear bond strengths were measured by applying the shear load parallel to Dicor surface close to the bonded area. Failure modes and interface appearances were observed using SEM at 15 and 1000 magnification respectively. The obtained results were as follows : 1. The mean shear bond strengths showed Dicor-Dicor Plus(10.53 MPa); Dicor-Vitadur Alpha(8.84 MPa); Dicor-Vitadur N(7.37 MPa); Dicor-Vivodent(4.28 MPa); Dicor-Ceramco II(0.89 MPa). 2. The shear bond strength of Dicor-CeramcoII was significantly decreased compared with Dicor-Dicor Plus(p<0.01), but had no significant difference compared with Dicor-Vivodent(p>0.01). 3. The shear bond strengths of Dicor-Vitadur Alpha and Dicor-Vitadur N were not significantly different compared with Dicor-Dicor Plus(p>0.01). 4. SEM examination of bond failure modes revealed that Dicor-Dicor plus, Dicor-Vitadur Alpha, Dicor-Vitadur N exhibited cohesive failure within Dicor and Dicor-Vivodent exhibited adhesive failure. And Dicor-Ceramco III exhibited adhesive failure and cohesive failure within CeramcoIII together. 5. SEM examination of interfaces revealed that Dicor-Dicor Plus exhibited the most tight contact and Dicor-Vitadur Alpha, Dicor-Vitadur N exhibited acceptible contacts. But Vivodent exhibited discontinuous gap and Ceramco II exhibited large continuous gap.

  • PDF

Full mouth rehabilitation using monolithic zirconia: a clinical report (Monolithic zirconia를 이용한 전악 보철 수복: a clinical report)

  • Oh, Won-Seok;Ryu, Jae-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.31 no.4
    • /
    • pp.358-363
    • /
    • 2015
  • Previously, the usage of monolithic zirconia in anterior restoration was limited because of problems such as the monotony of tones and shades which would compromise the outcome of esthetic purpose. Zirconia was merely used as a coping with additional porcelain veneering whereas porcelain chipping cannot be evaded. Recently, with the improvement of monolithic zirconia, the various translucency and tones made it possible to use zirconia for anterior restoration. In this case, a male patient of 63 years old received a full mouth rehabilitation with monolithic zirconia. After a period of time usage, the outcome showed a favorable result functionally and esthetically.

EFFECTS OF THE RECASTING ON THE PHYSICAL PROPERTIES OF Ni-Cr BASED ALLOY FOR FUSED PORCELAIN (도재소부용(陶材燒付用) Ni-Cr 합금(合金)의 재주조(再鑄造)가 물리적(物理的) 성질(性質)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Kim, S.I.;Kim, C.C.;Park, N.S.;Han, M.H.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.19 no.1
    • /
    • pp.55-60
    • /
    • 1981
  • Some physical properties of Ni-Cr based alloy for porcelain veneering were compared after repeated casting without the addition of any new alloy. The specimen were cast in a centrifugal caster with an oxygen-propane torch at optimum temperature. The obtained results were as follows: 1. The yield strength and hardness of the second generation were no significant differences compared with first generation but the yield strength and hardness of the third generation slightly decrased. 2. The ultimate tensile strength and elongation appeared to decrease slightly in second, third generations. 3. The tensile fractured facets of the first generation specimen were normal in all specimen, but in the second generation there were six tensile specimen out of ten, in the third there were four tensile specimen out of ten.

  • PDF

Study about shear bond strength of zirconia core used in dental prosthesis (치과 보철물에 사용되는 지르코니아 코어의 전단결합강도에 관한 연구)

  • Sim, Ji-Young;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the IPS e.max $ZirCAD^{(R)}$ zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing to the conventional metal ceramic system. Methods: The Schmitz-Schulmeyer test method was used to evaluate the core-veneer shear bond strength of zirconia core ceramic(IPS e.max $ZirCAD^{(R)}$) and their manufacture recommended two veneering ceramic systems(IPS e.max $ceram^{(R)}$, IPS e. max $ZirPress^{(R)}$). A metal ceramic system(Bellabond $plus^{(R)}$, VITA $VM13^{(R)}$) was used as a control group for the two all ceramic system test groups. The maximum loading and shear bond strength was measured. The average shear strength(MPa) was analyzed with the one-way ANOVA and the Tukey's test(${\alpha}$=.05). The fracture specimens were examined using Microscope to determine the failure pattern. Results: The mean shear bond strengths(SD) in MPa were MBSB control 43.62(2.13); ZBSB 18.65(1.76); ZPSB 18.89(1.54). The shear strengths of the zirconia cores were not significantly different(P>.05). Microscope examination showed that zirconia specimens presented mixed failure, and base metal alloy specimens showed adhesive failure. Conclusion: There was no siginificant different between the layering technique and the heat pressing technique in the veneering methods on the zirconia cores. None of the zirconia core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

A Study on the Shear Bond Strength of Veneering Ceramics to the Lithium Disilicate (IPS e.max CAD) Core (Lithium Disilicate (IPS e.max CAD) 코어와 전장 도재 사이의 전단결합강도에 관한 연구)

  • Kim, Ki-Baek;Kim, Jae-Hong
    • Journal of dental hygiene science
    • /
    • v.13 no.3
    • /
    • pp.290-295
    • /
    • 2013
  • The purpose of this study was to investigate the shear bond strength between various commercial all-ceramic system core and veneering ceramics, and evaluate the clinical stability by comparing the conventional metal ceramic system. The test samples were divided into three groups: Ni-Cr alloy (metal bond), yttria-stabilized, tetragonal zirconia polycrystal (Y-TZP) (zirconia bond), lithium disilicate (lithium disilicate bond). The veneering porcelain recommended by the manufacturer for each type of material was fired to the core. After firing, the specimens were subjected to shear force in a universal testing machine. Load was applied at a crosshead speed of 0.50 mm/min until failure. Average shear strengths (mega pascal) were analyzed with a one-way analysis of variance and the Tukey test (${\alpha}$=0.05). The mean shear bond strength${\pm}$SD in MPa was $44.79{\pm}2.31$ in the Ni-Cr alloy group, $28.32{\pm}4.41$ in the Y-TZP group, $15.91{\pm}1.39$ in the Lithium disilicate group. The ANOVA showed a significant difference among groups (p<0.05). None of the all-ceramic system core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

A Study on the Development of Porcelain Bonded Ni-Cr Dental Alloy (도재소부용 Ni-Cr 보철합금 개발에 관한 연구)

  • Lee, Gyu-Hwan;Sin, Myeong-Cheol;Choe, Bu-Byeong
    • Journal of Biomedical Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 1985
  • Development of a dental Ni-Cr alloy system for porcelain veneering crown and bridge was studied in this research. The principles of alloy design were a) It should not contain toxic beryllium. b) It should have low melting Point. c) It should be easily ground and polished. d) It should possess an adequate strength to resist the deformational force In the mouth. e) It should be bondable Ivith porcelain by chemically. After investigating the effect of minor elements such as boron and rare earth metals on the mechanical properties of the Ni-Cr alloy system, the compromised ideal composition for dental use was determined. The composition was l9.6%, Cr, 5.6% Mo, 3.4% Si, 1, 0% Fe, 0.01% Ti, 0.5-1.0% B, 0.2-0.6% misch metal, balance Ni. To compare the performance of experimental alloy with commercially available alloys, the properties such as strength, melting point, and bond strength were measured. The results Ivere as follows: a) Boron increases the strength of the alloy but reduces the elongation. b) Misch metal increases the strength when the boron content is low, but does not increase the strength when boron content is high. And it reduces the elongation drastically, c) Mechanical strength of the experimental alloy was not superior to commercially available Be containing alloy, but handling performance such as castability, ease of granting and polishing, and cuttability were superior to the Be containing alloy.

  • PDF

Procera System : a Review of Literature (Procera System의 역사적 고찰)

  • Shin, Soo-yeon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.309-315
    • /
    • 2006
  • The availability of high-technology systems that use computer-aided design(CAD) and computer-aided machining(CAM) is on the increase. One such system is the Procera system, which fabricates an all-ceramic crown composed of a densely sintered, high-purity aluminum oxide coping combined with a compatible veneering porcelain. Strength, precision of fit, esthetics, cementation, and biocompatibility are among the many factors that concern clinicians when fabricating all-ceramic restorations with this system. This paper reviews the long history and background development of technical, laboratory and clinical applications and presents, in summary form, the data from the many studies on the Procera system.

COMPARATIVE STUDY OF SHEAR BOND STRENGTH BETWEEN CP-TI/CO-CR ALLOY AND COMPOSITE RESINS

  • Yoon, Se-Hee;Pae, Ahran;Lee, Seok-Hyung;Lee, Ho-Rim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.6
    • /
    • pp.805-814
    • /
    • 2007
  • Statement of problem. Composite resin-veneered metal restorations can be used as an alternative to porcelain-fused-metal restorations. But, because of the relatively low bond strength of veneering composite to metal framework, various surface treatment methods have been introduced to improve the bond strength. Purpose. The object of this study was to compare the shear bond strength of different combinations of each of the two bonding systems and each of the two composite veneering resins to cp-Ti/Co-Cr alloy. Material and methods. Two resin bonding systems (metal conditioner containing MEPS monomer, tribochemical silicoating system) and two composite resins (Gradia, Sinfony) were tested on cp-Ti and Co-Cr alloy. Then, according to manufacturers' instructions, resin bonding systems and composite resins were applied. All test specimens were divided into four groups for each alloy; I) sandblast + Metal Primer II + Gradia (MG), II) sandblast + Metal Primer II + Sinfony (MS), III) Rocatec + Gradia (RG), IV) Rocatec + Sinfony (RS). The shear bond strength was determined using a universal testing machine and all data were statistically analyzed with Mann-Whitney test and Kruskal-Wallis test at the significance level of 0.05. Results. The mean (standard deviations) of shear bond strength according to the combinations of two bonding systems and two composite resins to cp-Ti arranged from 16.44 MPa to 17.07 MPa and the shear bond strength to Co-Cr alloy ranged from 16.26 MPa to 17.70 MPa. The result shows that the difference were not statistically significant. Conclusion. The shear bond strengths of composite resins to both cast cp-Ti and Co-Cr alloy were not significantly different between the metal conditioner and the tribochemical silicoating system. And no differences in bond strength were found between cp-Ti and Co-Cr alloy.