• Title/Summary/Keyword: velocity-Pressure decoupling

Search Result 7, Processing Time 0.017 seconds

An implicit velocity decoupling procedure for the incompressible Navier-Stokes equations (비압축성 Navier-Stokes 방정식에 대한 내재적 속도 분리 방법)

  • Kim KyounRyoun;Baek Seunr-Jin;Sung Hyunn Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.129-134
    • /
    • 2000
  • An efficient numerical method to solve the unsteady incompressible Navier-Stokes equations is developed. A fully implicit time advancement is employed to avoid the CFL(Courant-Friedrichs-Lewy) restriction, where the Crank-Nicholson discretization is used for both the diffusion and convection terms. Based on a block LU decomposition, velocity-pressure decoupling is achieved in conjunction with the approximate factorization. Main emphasis is placed on the additional decoupling of the intermediate velocity components with only n th time step velocity The temporal second-order accuracy is Preserved with the approximate factorization without any modification of boundary conditions. Since the decoupled momentum equations are solved without iteration, the computational time is reduced significantly. The present decoupling method is validated by solving the turbulent minimal channel flow unit.

  • PDF

Fully-Implicit Decoupling Method for Incompressible Navier-Stokes Equations (비압축성 나비어-스톡스 방정식의 완전 내재적 분리 방법)

  • Kim, Kyoung-Youn;Baek, Seung-Jin;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1317-1325
    • /
    • 2000
  • A new efficient numerical method for computing three-dimensional, unsteady, incompressible flows is presented. To eliminate the restriction of CFL condition, a fully-implicit time advancement in which the Crank-Nicolson method is used for both the diffusion and convection terms, is adopted. Based on an approximate block LU decomposition method, the velocity -pressure decoupling is achieved. The additional decoupling of the intermediate velocity components in the convection term is made for the fully -implicit time advancement scheme. Since the iterative procedures for the momentum equations are not required, the velocity components decouplings bring forth the reduction of computational cost. The second-order accuracy in time of the present numerical algorithm is ascertained by computing decaying vortices. The present decoupling method is applied to minimal channel flow unit with DNS (Direct Numerical Simulation).

Decoupling Effect on the Level of Blasting Vibration (발파진동의 크기에 마치는 디커플링효과의 연구)

  • Kim, Wang-Soo;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.20 no.A
    • /
    • pp.269-278
    • /
    • 2000
  • The pressure-time profile of the explosion gases can controlled for the use of cartridge explosive with two techniques known as Decoupling and spacing of the charges. Decoupling consists of a space between the explosive column and wall of the blast hole. Four different decoupling index 1.4, 1.8, 2.34, 3.0 are selected in this field study. The level of ground vibrations with each decoupling index was measured and the empirical particle velocity equation from these data was obtained. The condition of new cracks at blast hole are also examined. As the decoupling index is increased, the level of the blast vibration is decreased. But the cracks in rock masses are efficiently formed to remove the broken rock. The vibration constant associated with test sites is given as $K=1564.5(D.L)^{-1.3233}$ in terms of D.I.(decoupling index).

  • PDF

Decoupling effects on the level of blasting vibration (발파진동의 크기에 미피는 기커플링 효과의 연구(화약))

  • 김당수
    • Explosives and Blasting
    • /
    • v.15 no.3
    • /
    • pp.20-32
    • /
    • 1997
  • The pressure-time profile of the explosion gases can be controlled fot the use of cartridge explosives with two techniques Known as Decoupling and Spacing the charges. Decoupling consists in leaving and empty space between the explosive column and wall of the blast hole. Four different decoupling index, 1.4, 1.8, 2.34, 3.0 are selected in this field study. The level of ground vibrations with each decoupling index are measured and the empirical particle vibrations with each decoupling index are measured and the empirical particle velocity equation from these data was obtained. The condition of new cracks at blast hole are also examined. As the decoupling index in increased, the level of the blast vibration is decreased,. But the cracks in rock masses are efficiently formed to remove the broken rock. The vibration constant associated with a given site $K=1564.5(D.I)^{-1.3233}$ in terms of D.I(decopling index).

  • PDF

A Study of Non-staggered Grid Approach for Incompressible Heat and Fluid Flow Analysis (비압축성 열유동 해석을 위한 비엇갈림 격자법에 대한 연구)

  • Kim Jongtae;Kim Sang-Baik;Kim Hee-Dong;Maeng Joo-sung
    • Journal of computational fluids engineering
    • /
    • v.7 no.1
    • /
    • pp.10-19
    • /
    • 2002
  • The non-staggered(collocated) grid approach in which all the solution variables are located at the centers of control volumes is very popular for incompressible flow analyses because of its numerical efficiency on the curvilinear or unstructured grids. Rhie and Chow's paper is the first in using non-staggered grid method for SIMPLE algorithm, where pressure weighted interpolation was used to prevent decoupling of pressure and velocity. But it has been known that this non-staggered grid method has stability problems when pressure fields are nonlinear like in natural convection flows. Also Rhie-Chow scheme generates large numerical diffusion near curved walls. The cause of these unwanted problems is too large pressure damping term compared to the magnitude of face velocity. In this study the magnitude of pressure damping term of Rhie-Chow's method is limited to 1∼10% of face velocity to prevent physically unreasonable solutions. The wall pressure extrapolation which is necessary for cell-centered FVM is another source of numerical errors. Some methods are applied in a unstructured FV solver and analyzed in view of numerical accuracy. Here, two natural convection problems are solved to check the effect of the Rhie-Chow's method on numerical stability. And numerical diffusion from Rhie-Chow's method is studied by solving the inviscid flow around a circular cylinder.

Free Surface Flow in a Trench Channel Using 3-D Finite Volume Method

  • Lee, Kil-Seong;Park, Ki-Doo;Oh, Jin-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.429-438
    • /
    • 2011
  • In order to simulate a free surface flow in a trench channel, a three-dimensional incompressible unsteady Reynolds-averaged Navier-Stokes (RANS) equations are closed with the ${\kappa}-{\epsilon}$ model. The artificial compressibility (AC) method is used. Because the pressure fields can be coupled directly with the velocity fields, the incompressible Navier-Stokes (INS) equations can be solved for the unknown variables such as velocity components and pressure. The governing equations are discretized in a conservation form using a second order accurate finite volume method on non-staggered grids. In order to prevent the oscillatory behavior of computed solutions known as odd-even decoupling, an artificial dissipation using the flux-difference splitting upwind scheme is applied. To enhance the efficiency and robustness of the numerical algorithm, the implicit method of the Beam and Warming method is employed. The treatment of the free surface, so-called interface-tracking method, is proposed using the free surface evolution equation and the kinematic free surface boundary conditions at the free surface instead of the dynamic free surface boundary condition. AC method in this paper can be applied only to the hydrodynamic pressure using the decomposition into hydrostatic pressure and hydrodynamic pressure components. In this study, the boundary-fitted grids are used and advanced each time the free surface moved. The accuracy of our RANS solver is compared with the laboratory experimental and numerical data for a fully turbulent shallow-water trench flow. The algorithm yields practically identical velocity profiles that are in good overall agreement with the laboratory experimental measurement for the turbulent flow.

Flux Model of One-shaft Rotary Disc UF Module for the Separation of Oil Emulsion (1축 회전판형 UF 모듈의 투과모델 및 Oil Emulsion 분리 특성)

  • 김제우;노수홍
    • Membrane Journal
    • /
    • v.6 no.2
    • /
    • pp.86-95
    • /
    • 1996
  • Rotary disc ultrafiltration module(RDM) was developed for the separation of oil e$$\mu$sions. This module was devised to reduce the gel polarization phenomenon by decoupling the operation pressure and the surface velocity of solution in ultrafiltration(UF) processes. The rotary disc membrane consists of 3mm-thick ABS plate covered with UF membrane (UOP, U.S.A.). When the angular velocity($\omega$) was increased, the pure water flux was slightly decreased due to pressure drop caused by centrifugal force and slip flow at the surface of membrane. The pressure drop was proportional to the square of linear velocity(${\omega}r$). When the angular velocity was changed from 52.36rad/s to 2.62rad/s, the flux decline for 5% cutting oil in one-shaft RDM at $25^{\circ}C$ and 0.1MPa was 30.16%. In the lower concentrations, angular velocity tends to give less effect on the flux. Flux(J; $kg/m^{2} \cdot s$) in a rotating disc module is mainly a function of the bulk concentration($C_{B}$; %), the linear velocity(${\omega}r$; m/s) and the effective transmembrane pressure($\Delta P_{T}$ ; Pa). Using a modified resistance-in-series model, the flux data of cutting oil experiments were fitted to give the following equation.

  • PDF