• Title/Summary/Keyword: velocity integration method

Search Result 189, Processing Time 0.021 seconds

Performance Evaluation of the Velocity Profile Integration for the Multi-Path Ultrasonic Flowmeter in Symmetric & Asymmetric Flow Field (대칭 및 비대칭 유동장에서 다회선 초음파 유량계의 유속분포 적분 방법 평가)

  • Kim, Joo-Young;Kim, Kyung-Jin;Park, Sung-Ha
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.370-377
    • /
    • 2002
  • Generally, the system of calculation for the multi-path ultrasonic flow meters can be divided into two methods by how to get the mean velocity, namely, weighting and direct method. Weighting-method derive the mean velocity through modeling in theoretical velocity profile. Direct-method derive the mean velocity though actual flow distribution. The system of calculation varies with maker's transducer configuration and integration method. Each system has merits and demerits. This paper describes the system of integration that calculates line velocity over cross-section of the circular pipe. Flow rate mr discussed in this paper is a difference between theoretical flow rate and integrated flow rate according to values of Reynolds number in symmetric flow field or theoretical flow rate and integrated flow rate according to rotated model in asymmetric flow field.

  • PDF

Application of the explicit time integration finite element method to quasi-static metal forming problems (금속 성형 공정의 준정적 변형 예측을 위한 외연적 시간 적분 유한 요소법의 적용에 대한 연구)

  • Yoo, Y.H.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.53-63
    • /
    • 1995
  • In the analysis of metal forming problems, the explicit time integration finite element method, which does not have convergence problems, is frequently used. The present work is to assess the applicability of the explicit time integration finite element method to quasi-static metal forming problems. Compressing analyses of thin-walled tubes and solid cylinders are performed with different loading velocities. The computed buckled profiles of thin walled tubes are compared with the theoretical and experimental ones and it is found that at sufficiently low loading velocity, the explicit time integration finite element method accurately predict quasi-static buckled profiles. When loading volocity is increased, the computed buckled profiles of thin-walled tubes are very sensitive to loading velocity however the computed profiles of solid cylinders are less sensitive to loading velocity. In orther words, the geometrically self-constrained specimens like solid cylinders are less sensitive to loading velocity than the geometrically unconstrained specimens like thin-walled tubes. As a result, it is found that the geometrically self-constrained problems which include the greater part of metal forming problems can be efficiently analyzed with loading velocity control technique.

  • PDF

EGI Velocity Integration Algorithm for SAR Motion Measurement

  • Lee, Soojeong;Park, Woo Jung;Park, Yong-gonjong;Park, Chan Gook;Song, Jong-Hwa;Bae, Chang-Sik
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.4
    • /
    • pp.175-181
    • /
    • 2019
  • This paper suggests a velocity integration algorithm for Synthetic Aperture Radar (SAR) motion measurement to reduce discontinuity of range error. When using position data from Embedded GPS/INS (EGI) to form SAR image, the discontinuity of the data degrades SAR image quality. In this paper, to reduce the discontinuity of EGI position data, EGI velocity integration is suggested which obtains navigation solution by integrating velocity data from EGI. Simulation shows that the method improves SAR image quality by reducing the discontinuity of range error. INS is a similar algorithm to EGI velocity integration in the way that it also obtains navigation solution by integrating velocity measured by IMU. Comparing INS and EGI velocity integration according to grades of IMU and GPS, EGI velocity integration is more suitable for the real system. Through this, EGI velocity integration is suggested, which improves SAR image quality more than existing algorithms.

The Effect of Dynamic Visual-Motor Integration Training on the Visual Perception Reaction Velocity (역동적 시각-운동 통합 훈련이 시지각 처리 속도에 미치는 영향)

  • Song, Minok;Lee, Eunsil;Park, Sungho
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.3 no.4
    • /
    • pp.37-42
    • /
    • 2015
  • Purpose: This study was conducted to test the impact of The Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity. Dynavision were used to measure data from the participating 24 students(K college). Method : The participants were the 24 students of 'K' College in Busan in there twenties. They were divided into the The Dynamic Visual-Motor integration training group and the control group. To know if the Dynamic Visual-Motor integration training has effect on the visual perception reaction velocity, the Dynamic Visual-Motor integration training was implemented triweekly for 4 weeks. In Dynamic Visual-Motor integration training the ball should be grasped with one hand and threw by an arm. Only the balls threw beyond the objective point were counted. The visual perception reaction velocity and the number of response were measured before and after experiment by Dynavision. Result : Firstly, the visual perception reaction velocity was increased in Dynamic Visual-Motor integration training group compared with control group. Secondly, the number of response was also increased in Dynamic Visual-Motor integration training group compared with control group. Conclusion : As a result of The Dynamic Visual-Motor integration training has an effect on the visual perception reaction velocity and the number of response. The Dynamic Visual-Motor integration training seems to be effective for cerebral apoplexy patient who has visual perceptional disability or cerebral palsy child in training for visual perceptional development or daily living activities development. Study participated by more detailed and practical patients in hospital is needed.

Uncertainty Evaluation of Velocity Integration Method for 5-Chord Ultrasonic Flow Meter Using Weighting Factor Method (가중계수법을 이용한 5회선 초음파 유량계의 유속적분방법의 불확도 평가)

  • Lee, Ho-June;Lee, Kwon-Hee;Noh, Seok-Hong;Hwang, Sang-Yoon;Noh, Young-Ah
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.287-294
    • /
    • 2005
  • Flow rate measurement uncertainties of the ultrasonic flow meter are generally influenced by many different factors, such as Reynolds number, flow distortion, turbulence intensity, wall surface roughness, velocity integration method along the acoustic paths, and transducer installation method, etc. Of these influencing factors, one of the most important uncertainties comes from the velocity integration method. In the present study, a optimization weighting factor method for 5-chord, which is given by a function of the chord locations of acoustic paths, is employed to obtain the mean velocity in the flow through a pipe. The power law profile is assumed to model the axi-symmetric pipe flow and its results are compared with the present weighting factor concept. For an asymmetric pipe flow, the Salami flow model is applied to obtain the velocity profiles. These theoretical methods are also compared with the previous Gaussian, Chebyshev, and Tailor methods. The results obtained show that for the fully developed turbulent pipe flows with surface roughness effects, the present weighting factor method is much less sensitive than Chebyshev and Tailor methods, leading to a better reliability in flow rate measurement using the ultrasonic flow meters.

  • PDF

Analysis of Steady Vortex Rings Using Contour Dynamics Method for Fluid Velocity

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.108-114
    • /
    • 2022
  • Most studies on the shape of the steady vortex ring have been based on the Stokes stream function approach. In this study, the velocity approach is introduced as a trial approach. A contour dynamics method for fluid velocity is used to analyze the Norbury-Fraenkel family of vortex rings. Analytic integration is performed over the logarithmic-singular segment. A system of nonlinear equations for the discretized shape of the vortex core is formulated using the material boundary condition of the core. An additional condition for the velocities of the vortical and impulse centers is introduced to complete the system of equations. Numerical solutions are successfully obtained for the system of nonlinear equations using the iterative scheme. Specifically, the evaluation of the kinetic energy in terms of line integrals is examined closely. The results of the proposed method are compared with those of the stream function approaches. The results show good agreement, and thereby, confirm the validity of the proposed method.

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Naknma, Yoshiyasu;Kouguchi, Nobuyoshi;Song, Chae-Uk
    • Journal of Navigation and Port Research
    • /
    • v.33 no.2
    • /
    • pp.99-104
    • /
    • 2009
  • The Kinematic GPS is well known to provide a quite good accuracy of positioning within an level. Although kinematic GPS assures high precision measurement on the basis of an appreciable distance between a reference station and an observational point, it has measurable distance restriction within 20 km from a reference station on land. Therefore, it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction In this paper, the velocity integration method to get the precise velocity information of a ship is explained. The experimental results of Zig-zag maneuver and Williamson turn as the ship's maneuvering test, and other experimental results of ship's movement during leaving and entering the port with low speed were shown. From the experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.

Experimental Results of Ship's Maneuvering Test Using GPS

  • Yoo, Yun-Ja;Hou, Dai-Jin;Hamada, Masaaki;Nakama, Yoshiyasu;Kouguchi, Nobuyoshi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.49-55
    • /
    • 2006
  • Kinematic GPS provides quite good accuracy of position in cm level. Though K-GPS assures high precision measurement in cm level on the basis of an appreciable distance between a station and an observational point, but it has measurable distance restriction within 20 km from a reference station on land. So it is necessary to make out a simple and low-cost method to obtain accurate positioning information without distance restriction. In this paper, the velocity integration method to get the precise velocity information of ship is explained. Next two experimental results (Zig-zag maneuvering test and Williamson turn) as the ship's maneuvering test and also the experimental results of leaving and entering port as slow speed ship's movement were shown. In these experimental results, ship's course, speed and position are compared with those obtained by kinematic-GPS, velocity integration method and dead reckoning position using Gyro-compass and Doppler-log.

  • PDF

A Study on GPS/INS Integration Considering Low-Grade Sensors (저급 센서를 고려한 GPS/INS 결합기법 연구)

  • Park, Je Doo;Kim, Minwoo;Lee, Je Young;Kim, Hee Sung;Lee, Hyung Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.140-145
    • /
    • 2013
  • This paper proposes an efficient integration method for GPS (Global Positioning System) and INS (Inertial Navigation System). To obtain accuracy and computational conveniency at the same time with low cost global positioning system receivers and micro mechanical inertial sensors, a new mechanization method and a new filter architecture are proposed. The proposed mechanization method simplifies velocity and attitude computation by eliminating the need to compute complex transport rate related to the locally-level frame which continuously changes due to unpredictable vehicle motions. The proposed filter architecture adopts two heterogeneous filters, i.e. position-domain Hatch filter and velocity-aided Kalman filter. Due to distict characteristics of the two filters and the distribution of computation into the two hetegrogeneous filters, it eliminates the cascaded filter problem of the conventional loosly-coupled integration method and mitigates the computational burden of the conventional tightly-coupled integration method. An experiment result with field-collected measurements verifies the feasibility of the proposed method.

A Study on the Techniques to Evaluate Carbody Accelerations after a Train Collision (충돌 후 열차의 차체 가속도 평가 기법 연구)

  • Kim, Joon-Woo;Koo, Jeong-Seo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.5
    • /
    • pp.477-485
    • /
    • 2010
  • In this study, we suggested several approaches to evaluate the collision acceleration of a carbody under the article 16 of the Korean rolling stock safety regulations. There are various methods to evaluate the rigid body accelerations such as the displacement comparison method by double integration of filtered acceleration data, the velocity comparison method by direct integration of filtered acceleration data, and the analysis method of a velocity-time curve. We compared these methods one another using the 1D dynamic simulation model of Korean high-speed EMU composed of nonlinear springs or bars, dampers, and masses. From the simulation results, the velocity-time curve analysis method and the displacement comparison method are recommended to filter high frequency oscillations and evaluate the maximum and average accelerations of a carbody after a train collision.