• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.039 seconds

Geomagnetic Sensor Compensation and Sensor Fusion for Quadrotor Heading Direction Control (쿼드로터 헤딩 방향 제어를 위한 지자기 센서 보상 및 센서 융합)

  • Lee, You Jin;Ryoo, Jung Rae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.95-102
    • /
    • 2016
  • Geomagnetic sensors are widely utilized for sensing heading direction of quadrotors. However, measurement from a geomagnetic sensor is easily corrupted by environmental magnetic field interference and roll/pitch directional motion. In this paper, a measurement method of a quadrotor heading direction is proposed for application to yaw attitude control. In order to eliminate roll/pitch directional motion effect, the geomagnetic sensor data is compensated using the roll/pitch angles measured for stabilization control. In addition, yaw-directional angular velocity data from a gyroscope sensor is fused with the geomagnetic sensor data using a complementary filter which is a simple and intuitive sensor fusion method. The proposed method is applied to experiments, and the results are presented to prove validity and effectiveness of the proposed method.

Analysis of Clutter Effects in a Weather Radar (기상 레이다에서의 클러터 영향 분석)

  • Lee, Jonggil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1641-1648
    • /
    • 2016
  • A weather radar estimates Doppler frequency and width of Doppler spectrum from the received weather signal which represents the return echoes from rain or dust particles in a corresponding area. These estimates are very important parameters since they are directly related to precipitation, wind velocity and degree of turbulence. Therefore, these estimated values should be highly reliable to obtain accurate weather information. However, the echoes of a weather radar include both the weather signal and the clutter which occurred from ground reflection or moving objects, etc. The existence of the clutter in the echoes may cause serious errors in the estimation of weather-related parameters. Therefore, in this paper, models are developed to represent the weather signal and the clutter for the purpose of analyzing estimation errors caused by the strong clutter echoes. Using these models, various return echoes according to the weather signal and clutter power are simulated to analyze the effects of the clutter.

On Indexing Method for Current Positions of Moving Objects (이동 객체의 현재 위치 색인 기법)

  • Park, Hyun-Kyoo;Kang, Sung-Tak;Kim, Myoung-Ho;Min, Kyoung-Wook
    • Journal of Korea Spatial Information System Society
    • /
    • v.5 no.1 s.9
    • /
    • pp.65-74
    • /
    • 2003
  • Location-based service is an important spatiotemporal database application area that provides the location-aware information of wireless terminals via positioning devices such as GPS. With the rapid advances of wireless communication systems, the requirement of mobile application areas including traffic, mobile commerce and supply chaining management became the center of attention for various research issues in spatiotemporal databases. In this paper we present the A-Quadtree, an efficient indexing method for answering location-based queries where the movement vector information (e.g., speed and velocity) is not presented. We implement the A-Quadtree with an index structure for object identifiers as a.Net component to apply the component to multiplatforms. We present our approach and describe the performance evaluation through various experiments. In our experiments, we compare the performance with previous approaches and show the enhanced efficiency of our method.

  • PDF

Analysis of Physiological Bio-information, Human Physical Activities and Load of Lumbar Spine during the Repeated Lifting Work (반복적인 들어올리기 작업시 작업자의 생체정보, 인체활동량 및 허리부하 분석)

  • Son, Hyun-Mok;SeonWoo, Hoon;Lim, Ki-Taek;Kim, Jang-Ho;Chung, Jong-Hoon
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.357-365
    • /
    • 2010
  • Workers in the agricultural industry have been exposed to many work-related musculoskeletal disorders. So, our objectives in this study were to measure and analyze worker's physiological bio-information to reduce musculoskeletal disorders in relation to agricultural works. We investigated worker's bio-information of physiological signals during the repeated lifting work such as body temperature, heart rate, blood pressure, physical activity, and heart rate variability. Moreover, we analyzed the workloads of lumbar spine during the repeated lifting work using the 3-axis acceleration and angular velocity sensors. The changes of body temperature was not significant, but the mean heart rate increased from 90/min to 116/min significantly during 30 min of repeated lifting work (p<0.05). The average worker's physical activity(energy consumption rate) was 206 kcal/70kg/h during the repeated lifting work. The workers' acute stress index was more than 80, which indicated a stressful work. Also, the maximum shear force on the disk (L5/S1) of a worker's lumbar spine in static state was 500N, and the maximum inertia moment was 139 $N{\cdot}m$ in dynamic state.

Imagery Intelligence Transmission Analysis of Common Data Link (CDL) on Aeronautical Wireless Channel (항공통신정찰링크(CDL)에서 영상정보 전송을 위한 통신방안 연구)

  • Park Young-mi;Yoon Jang-hong;Kim Sung-jo;Son Young-ho;Yoon E-joong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1425-1431
    • /
    • 2005
  • In this paper, we consider the ISR(Intelligence, Surveillance, and Reconnaissance) system which collects the imagery intelligence from an airplane and CDL(common data link) communication system which transports the information obtained by the ISR system. The IMINT(imagery intelligence) consists of MPEG-2 transport stream packets and they transmit through CDL. We have some simulations for communication performances of CDL and show performance improvements using convolutional coding. We have compared BER performances under AWGN channel and fading channel which is caused by the velocity of an airplane.

Pose Control of Mobile Inverted Pendulum using Gyro-Accelerometer (자이로-가속도센서를 이용한 모바일 역진자의 자세 제어)

  • Kang, Jin-Gu
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.10
    • /
    • pp.129-136
    • /
    • 2010
  • In this paper proposed the sensor fusion algorithm between a gyroscope and an accelerometer to maintain the inverted posture with two wheels which can make the robot body move to the desired destination. Mobile inverted robot fall down to the forward or reverse direction to converge to the stable point. Therefore, precise information of tilt angles and quick posture control by using the information are necessary to maintain the inverted posture, hence this paper proposed the sensor fusion algorithm between a gyroscope to obtain the angular velocity and a accelerometer to compensate for the gyroscope. Kalman Filter is normally used for the algorithm and numerous research is progressing at the moment. However, a high-performing DSP and systems are needed for the algorithm. This paper realized the robot control method which is much simpler but able to get desired performance by using the sensor fusion algorithm and PID control.

Experimental result of Real-time Sonar-based SLAM for underwater robot (소나 기반 수중 로봇의 실시간 위치 추정 및 지도 작성에 대한 실험적 검증)

  • Lee, Yeongjun;Choi, Jinwoo;Ko, Nak Yong;Kim, Taejin;Choi, Hyun-Taek
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.108-118
    • /
    • 2017
  • This paper presents experimental results of realtime sonar-based SLAM (simultaneous localization and mapping) using probability-based landmark-recognition. The sonar-based SLAM is used for navigation of underwater robot. Inertial sensor as IMU (Inertial Measurement Unit) and DVL (Doppler Velocity Log) and external information from sonar image processing are fused by Extended Kalman Filter (EKF) technique to get the navigation information. The vehicle location is estimated by inertial sensor data, and it is corrected by sonar data which provides relative position between the vehicle and the landmark on the bottom of the basin. For the verification of the proposed method, the experiments were performed in a basin environment using an underwater robot, yShark.

Maximum Height and Velocity of Jumping Car in The Air (공중으로 점프한 차량의 최대 높이 및 속도)

  • Shin, Seong-Yoon;Lee, Hyun-Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.55-60
    • /
    • 2012
  • An free-fall object is received only force of gravity. Movement that only accept gravity is free-fall movement, and a free-falling object is free falling body. In other words, free falling body is only freely falling objects under the influence of gravity, regardless of the initial state of objects movement. In this paper, we assume, ignoring the resistance of the air, and the free-fall acceleration by the height does not change within the range of the short distance in the vertical direction. Under these assumptions, we can know about time and maximum height to reach the peak point from jumping vertically upward direction, time and speed of the car return to the starting position, and time and speed when the car fall to the ground. It can be measured by jumping degree and risk of accident from car or motorcycle in telematics.

Example Development of Medical equipment applying Power Electronics Technique (전력전자 기술을 응용한 의료장비 개발 사례)

  • Ko Jongsun;Lee Taehoon;Kim Yongil;Kim Gyugyeom;Park Byungrim;Kim Minsun
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.661-664
    • /
    • 2002
  • A control of the body posture and movement is maintained by the vestibular system, vision, and proprioceptors. Afferent signals from those receptors are transmitted to the vestibular nuclear complex, and the efferent signals from the vestibular nuclear complex control the eye movement. The postural disturbance caused by loss of the vestibular function results in nausea, vomiting, vertigo and loss of craving for life. The purpose of this study is to develop a off-vertical rotatory system for evaluating the function of semicircular canals and otolith organs, selectively, and visual stimulation system for stimulation with horizontal, vertical and 3D patterns. The Off-vertical axis rotator which stimulates semicircular canals and otolith organs selectively is composed of a comportable chair, a DC servo-motor with reducer and a tilting table controlled by PMSM. And a double feedback loop system containing a velocity feedback loop and a position feedback loop is applied to the servo controlled rotatory chair system. Horizontal, vertical, and 3D patterns of the visual stimulation for applying head mounted display are developed. And wireless portable systems for optokinetic stimulation and recording system of the eye movement is also constructed. The Gain, phase, and symmetry is obtained from analysis of the eye movement induced by vestibular and visual stimulation. Detailed data were described.

  • PDF

Effects of Different Averaging Operators on the Urban Turbulent Fluxes (평균 방법이 도시 난류 플럭스에 미치는 영향)

  • Kwon, Tae Heon;Park, Moon-Soo;Yi, Chaeyeon;Choi, Young Jean
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.197-206
    • /
    • 2014
  • The effects of different averaging operators and atmospheric stability on the turbulent fluxes are investigated using the vertical velocity, air temperature, carbon dioxide concentration, and absolute humidity data measured at 10 Hz by a 3-dimensional sonic anemometer and an open-path $CO_2/H_2O$ infrared gas analyzer installed at a height of 18.5 m on the rooftop of the Jungnang KT building located at a typical residential area in Seoul, Korea. For this purpose, 7 different averaging operators including block average, linear regression, and moving averages during 100 s, 300 s, 600 s, 900 s, and 1800 s are considered and the data quality control procedure such as physical limit check and spike removal is also applied. It is found that as the averaging interval becomes shorter, turbulent fluxes computed by the moving average become smaller and the ratios of turbulent fluxes computed by the 100 s moving average to the fluxes by the 1800 s moving average under unstable stability are smaller than those under neutral stability. The turbulent fluxes computed by the linear regression are 85~92% of those computed by the 1800 s moving average and nearly the same as those computed by 900 s moving average, implying that the adequate selection of an averaging operator and its interval will be very important to estimate more accurate turbulent fluxes at urban area.