• Title/Summary/Keyword: velocity information

Search Result 2,089, Processing Time 0.033 seconds

Fluidized Bed Drying Effect on the Aerogel Powder Synthesis

  • Hong, Seong-Hoon;Lee, Dong-Kyu;Oh, Chang-Sup;Kim, Yong-Ha
    • Journal of Energy Engineering
    • /
    • v.21 no.1
    • /
    • pp.43-46
    • /
    • 2012
  • A fluidized bed drying approach was utilized to the synthesis of water glass based silica aerogel powders. The effects of the fluidized bed drying conditions such as the superficial velocity and temperature of hot air and bead size as well as bead/wet-gel ratio, on the physical properties such as tapping density and productivity of the aerogel powders were systematically investigated. The experimental results showed that the amount of beads mixed with wet-gels in the fluidized bed column has the most profound impact on the fluidization efficiency, greatly enhancing the yield of the aerogel powders up to 98% with a proper bead/wet-gel weight ratio as compared to 72% without using beads. No significant change was observed in the tapping density over a wide range of the fluidized drying condition. Consequently the fluidized bed drying approach shows a good promise as an alternative route for the large-scale production of the aerogel powders.

UAV Conflict Detection and Resolution Based on Geometric Approach

  • Park, Jung-Woo;Oh, Hyon-Dong;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 2009
  • A method of conflict detection and resolution is described by using simple geometric approach. Two VAVs are dealt with and considered as point masses with constant velocity. This paper discusses en route aircraft which are assumed to be linked by real time data bases like ADS-B. With this data base, all DAVs share the information each other. Calculating PCA (Point of Closest Approach), we can evaluate the worst conflict condition between two VAVs. This paper proposes one resolution maneuvering logic, which can be called 'Vector Sharing Resolution'. In case of conflict, using miss distance vector in PCA, we can decide the directions for two VAVs to share the conflict region. With these directions, VAVs are going to maneuver cooperatively. First of all, this paper describes some '2-D' conflict scenarios and then extends to '3-D' conflict scenarios.

Design of Pad Groove in CMP using CFD (CFD를 이용한 CMP의 Pad Groove 형상 설계 연구)

  • Choi, Chi-Woong;Lee, Do-hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.4 s.21
    • /
    • pp.21-28
    • /
    • 2003
  • CMP (Chemical Mechanical Polishing) is to achieve adequate local and global planarization for future sub-micrometer VLSI requirements. In designing CMP, numerical computation is quite helpful in terms of reducing the amount of experimental works. Stresses on pad, concentration of particles and particle tracking are studied for design. In this research, the optimization of grooved pad shape of CMP is performed through numerical investigation of slurry flow in CMP process. The result indicates that the combination of sinusoidal groove and skewed pad is the most optimal shape among the twenty candidates. Useful information can be obtained in velocity, pressure, stress, concentration of particles and particles trajectories, etc.

SAR RETURN SIGNAL SYNTHESIS IN TIME-SPATIAL DOMAIN

  • Shin Dongseok;Kim Moon-Gyu;Kwak Sunghee
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.729-732
    • /
    • 2005
  • This paper describes a time-spatial domain model for simulating raw data acquisition of space-borne SAR system. The position, velocity and attitude information of the platform at a certain time instance is used for deriving sensor-target model. Ground target is modelled by a set of point scatters with reflectivity and two-dimensional ground coordinates. The signal received by SAR is calculated for each slow and fast time instance by integrating the reflectivity and phase values from all target point scatters. Different from frequency domain simulation algorithms, the proposed time domain algorithm can provide fully physical modelling of SAR raw data simulation without any assumptions or approximations.

  • PDF

A Nonlinear Observer for the Estimation of the Full State of a Sawyer Motor (평판 모터 상태 관측을 위한 비선형 관측기)

  • Kim, Won-Hee;Chung, Chung-Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2292-2297
    • /
    • 2010
  • To improve the performances of Sawyer motors and to regulate yaw rotation, various feedback control methods have been developed. Almost all of these methods require information on the position, velocity or full state of the motor. Therefore, in this paper, a nonlinear observer is designed to estimate the full state of the four forcers in a Sawyer motor. The proposed method estimates the full state using only positional feedback. Generally, Sawyer motors are operated within a yaw magnitude of several degrees; outside of this range, Sawyer motors step out. Therefore, this observer design assumes that the yaw is within ${\pm}90^\b{o}$. The convergence of the estimation error is proven using the Lyapunov method. The proposed observer guarantees that the estimation error globally exponentially converges to zero for all arbitrary initial conditions. Furthermore, since the proposed observer does not require any transformation, it may result in a reduction in the commutation delay. The simulation results show the performance of the proposed observer.

A Study on the Simulation of Ink Penetration into the Uncoated Papers in Gravure Printing (그라비어 인쇄에서 비도피지의 잉크 침투 시뮬레이션에 관한 연구)

  • Seo, Yea-Ri;Youn, Jong-Tae
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • Gravure printing and manufacturing of advanced electronic components in a way that is going extra hold position. It is to print the electronic components of the rapid productivity improvements as well as cost-saving and environment-friendly industries such as the transition is a big advantage. However the mechanism of gravure is difficult to study scientifically because of high speed and excessively small size of the cell. To approach the mechanism we experimented using gravure printability. The condition of variables of IGT is pressure and velocity. By using Flow-3D simulation software, we built up the theoretical model under the constant variables. Then, we compared the real test with the simulation results. Therefore, it is studied the mechanism of gravure scientifically and it can be analysed the effect of the variable conditions.

신경회로망을 이용한 이동로보트의 위치 추정에 관한 연구

  • 김재희;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.214-219
    • /
    • 2001
  • For navigation of a mobile robot, it is one of the essential tasks of find out its current position. Dead reckoning is the most frequently used method to estimate its position. However conventional dead reckoner is prone to give us false information on the robot position especially when the wheels are slipping. This paper proposes an improved dead reckoning scheme using neural networks. The network detects the instance of wheel slipping and estimates the linear velocity of the wheel ; thus it calculates current position and heading angel of a mobile robot. The structure and variables of the neural network are chosen based on the analysis of slip motion robot. The structure and variables of the neural network are chosen based on the analysis of slip motion characteristics. A series of experiments are performed to investigate the performance of the improved dead reckoning system.

The investigation of postural balance recovery mechanism of high-heeled women using COP's kinematic characteristics during the waist pulling (전방향 동요 시 압력중심의 기구학적 특성을 통한 하이힐 착용 여성의 자세균형회복 메커니즘에 관한 고찰)

  • 조원학;서민좌;최현기
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1211-1214
    • /
    • 2004
  • High-heeled women have been identified with balance control problems. The purposes of this study were to objectively quantify the displacements and velocities of center-of-pressure (COP) of body during waist pulling and to compare the differences between barefooted and high-heeled situations. We used a waist pulling system which has three different magnitudes to sway the subjects. We found that the kinematic information of barefooted and high-heeled women's COP is very important in understanding the mechanism of postural balance control of women in every-day life. In the high-heeled's case, the displacement of COP increases in 200% as against bare footed. Also the velocity variation of COP grows three times than the bare footed. COP analysis in postural balance study of high-heeled women is also considered useful in development of the safety systems that prevent high-heeled women from falling

  • PDF

New hole mobility model including hole and lattice (정공과 격자의 온도를 고려한 새로운 정공 이동도 모델)

  • 김중식;김진양;김찬호;신형순;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.8
    • /
    • pp.31-37
    • /
    • 1998
  • A new self-consistent hole mobility model that includes lattice and hole temeprature has been proposed. By including the lattice and hole temperatures as well as the effective transverse field and the interface fixed charge, the model predicted the saturation of hole drift velocity and showed the effects of coulomb scattering, surface phonon scattering, and surface roughness scattering. The calculated data by the model were compared with the reported experimental data and they were shown to agree quite well. The new model is expected to estimate the characteristics of very short channel devices in the in the hydrodynamic model simulation.

  • PDF

Implementation of an Embedded System for an Interaction between Robot Arm and Human Arm Based on Force Control (힘 제어 기반의 로봇 팔과 인간 팔의 상호 작용을 위한 임베디드 시스템 설계)

  • Jeon, Hyo-Won;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1096-1101
    • /
    • 2009
  • In this paper, an embedded system has been designed for force control application to interact between a robot arm and a human operator. Force induced by the human operator is converted to the desired position information for the robot to follow. For smooth operations, the impedance force control algorithm is utilized to represent interaction between the robot and the human operator by filtering the force. To improve the performance of position control of the robot arm, a velocity term has been obtained and tested by several filters. A PD controller for position control has been implemented on an FPGA as well. Experimental studies are conducted with the ROBOKER to test the functionality of the designed hardware.