• Title/Summary/Keyword: velocity for the feedback control

Search Result 261, Processing Time 0.023 seconds

Sliding Mode Control of Rotational Inverted Pendulums Using Output Feedback Compensator (출력 피드백을 이용한 회전형 역진자의 슬라이딩 모드 제어)

  • Ha, Jong-Heon;Choi, Joeng-Ju;Kim, Jong-Shik
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.469-474
    • /
    • 2000
  • A sliding mode control method using the parameterization of both the hyperplane and the compensator for output feedback and reduced observer is presented for rotational inverted pendulums. This control strategy overcomes the problem of unattainable velocity state which is resulted from severe noise of analogue sense and constructs numerical algorithms designs of dynamic output feedback sliding mode hyperplane and controller. The result of the experiment shows the superior performance compared with the LQ controller and the robustness with respect to both tapping disturbances and certain initial conditions.

  • PDF

Output Feedback Dynamic Surface Control of Flexible-Joint Robots

  • Yoo, Sung-Jin;Park, Jin-Bae;Choi, Yoon-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.223-233
    • /
    • 2008
  • A new output feedback controller design approach for flexible-joint (FJ) robots via the observer dynamic surface design technique is presented. The proposed approach only requires the feedback of position states. We first design an observer to estimate the link and actuator velocity information. Then, the link position tracking controller using the observer dynamic surface design procedure is developed. Therefore, the proposed controller can be simpler than the observer backstepping controller. From the Lyapunov stability analysis, it is shown that all signals in a closed-loop system are uniformly ultimately bounded. Finally, the simulation results of a three-link FJ robot are presented to validate the good position tracking performance of the proposed control system.

On Output Feedback Tracking Control of Robot Manipulators with Bounded Torque Input

  • Moreno-Valenzuela, Javier;Santibanez, Victor;Campa, Ricardo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.76-85
    • /
    • 2008
  • Motivated by the fact that in many industrial robots the joint velocity is estimated from position measurements, the trajectory tracking of robot manipulators with output feedback is addressed in this paper. The fact that robot actuators have limited power is also taken into account. Let us notice that few solutions for the torque-bounded output feedback tracking control problem have been proposed. In this paper we contribute to this subject by presenting a theoretical reexamination of a known controller, by using the theory of singularly perturbed systems. Motivated by this analysis, a redesign of that controller is introduced. As another contribution, we present an experimental evaluation in a two degrees-of-freedom revolute-joint direct-drive robot, confirming the practical feasibility of the proposed approach.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • v.32 no.5
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

Vibration Suppression Control for Mechanical Transfer Systems by Jerk Reduction

  • Hoshijima, Kohta;Ikeda, Masao
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.614-620
    • /
    • 2007
  • This paper considers vibration suppression of a mechanical transfer system, where the work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. From the equation of motion, we first derive a state equation including the jerk and acceleration of the hand, but excluding the displacement and velocity of the work. Then, we design optimal state feedback for a suitable cost function, and show by simulation that jerk reduction of the hand is effective for vibration suppression of the work and improvement of the settling time. Since state feedback including the jerk and acceleration is not practical, we propose a computation method for optimal feedback using displacements and velocities in the state only.

Effect of 4 Weeks of Pilates Exercise in Women using Light LED EMG Feedback System on Posture and Balance; Randomized Controlled Trial

  • Jeong Eun Youn;Dae-Sung Park
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.214-221
    • /
    • 2023
  • Objective: This study aimed to assess the impact of using the LED light electromyographyfeedback system (EMG-light) during Pilates exercises in women to maintain consistent muscle contraction in the abdominal external oblique muscles and reduce muscle contraction in the upper trapezius muscles. This study compared Pilates training using the EMG-light with Pilates training only in healthy women for 4 weeks. Design: This study was conducted as a cross-sectional study. Methods: A total of 17 healthy women were divided into an experimental group (n=9) and a control group (n=8). Both groups performed Pilates exercises as assigned, twice per week for four weeks, with each session lasting fifty minutes. The experimental group were used the EMG-light feedback system during pilates exercise while the control group did not use EMG-light. We used cervical vertebral angle (CVA), shoulder tilt angle to evaluate neck posture and standing balance with closed eye for 30s before and after exercise. Results: The control group exhibited a significant change in CVA (p<0.05). Both groups showed significant changes in shoulder tilt, center of pressure (COP) path-length, and COP velocity during eyes-closed conditions (p<0.05). However, there were significant differences between the experimental and control groups in terms of CVA, shoulder tilt, COP path-length, and COP velocity. Conclusions: This study demonstrated that Pilates exercises had positive effects on shoulder posture and balance. The use of EMG-light provided real-time visual feedback on muscle contraction during Pilates exercise. However, the experimental group did not show significant improvements compared to the control group, which performed Pilates exercises without feedback.

Position and swing angle control for loads of overhead cranes (천정크레인 부하의 위치 및 흔들림 제어)

  • Lee, Ho-Hoon;Cho, Sung-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.297-304
    • /
    • 1997
  • This paper presents a systematic design method of an anti-swing control law for overhead cranes. A velocity servo system for the trolley of a crane is designed based on the dynamics of the trolley and its load. The velocity servo system compensates for the effects of load swing on the trolley dynamics so that the velocity servo is independent of load swing. The velocity servo system is used for the design of a position servo system for the trolley via the loop shaping method. The position servo system and the swing dynamics of the load are then used to design an angle control system for load swing based on the root locus method. The combined position servo and the angle control systems constitute the overall control system. In the presence of low frequency disturbances, the proposed control law guarantees accurate position control for the trolley and fast damping for load swing. Furthermore, the performance of the proposed control law is independent of the mass of the load. Experimental results on a prototype crane show the effectiveness of the proposed anti-swing control law.

A Levitation Controller Design for a Magnetic Levitation System (자기부상 시스템의 부상제어기 설계)

  • 김종문;강도현;박민국;최영규
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.342-350
    • /
    • 2003
  • In this paper, a levitation controller for a magnetic levitation(MagLev) system is designed and implemented. The target to be controlled is PEM(permanent and electromagnet) type with 4-corners levitation which is open-loop unstable, highly non-linear and time-varying system. The digital control system consists of a VME-based CPU board, AD board, PU board, 4-Quadrant chopper, and gap sensor, accelerometer as feedback sensors. In order to estimate the velocity of the magnet, we used 2nd-order state observer with acceleration and gap signal as input and output, respectively. Using the estimated states, a state feedback control law for the plant is designed and the feedback gains are selected by using the pole-placement method. The designed controller is experimentally validated by step-type gap reference change and force disturbance test.

Output Feedback Tracking Control of Wheeled Mobile Robots with Kinematic Disturbances (이동로봇의 기구학 외란 보상을 위한 출력 궤환 제어)

  • Chwa, Dongkyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2053-2056
    • /
    • 2016
  • In this paper, we propose an output feedback tracking control method for the wheeled mobile robots with kinematic disturbances. The kinematic disturbances should be compensated to avoid the performance degradation. Also, the unavailable velocity of the mobile robot should be estimated. These should be estimated together by designing the nonlinear observer. Based on these estimates, the output feedback controller can be designed. The stability of the mobile robot control systems using the proposed method is rigorously analyzed and the simulation results are also provided to validate the proposed method.

Vibration Control of Pretwisted Composite Thin-walled Rotating Beam with Non-uniform Cross Section (초기 비틀림각을 갖는 비균일 박판보 블레이드의 진동제어)

  • 임성남;나성수
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.6
    • /
    • pp.486-494
    • /
    • 2004
  • This paper addresses the dynamic modeling and closed-loop eigenvibration analysis of composite rotating pretwisted fan blade modeled as non-uniform thin-walled beam with bi-convex cross-section fixed at the certain presetting angle and incorporating piezoelectric induced damping capabilities. The blade model incorporates non-classical features such as transverse shear, rotary inertia and includes the centrifugal and Coriolis force field. A velocity feedback control law relating the piezoelectiriccally induced transversal bending moment at the beam tip with the appropriately selected kinematical response quantity is used and the beneficial effects upon the closed loop eigenvibration of the blade are highlighted.