• Title/Summary/Keyword: velocity fields

Search Result 1,087, Processing Time 0.026 seconds

Two-Dimensional Flow Behavior Through a Stage of an Axial Compressor (축류 압축기내의 2차원 유동 특성)

  • Hong, Seong-Hun;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2561-2571
    • /
    • 1996
  • The flow in the turbomachinery is very unsteady due to the stator-rotor interaction. It has been indicated that the stator-rotor interaction has three distinct causes of unsteadiness: that is, the viscous vortex shedding, wake rotor interaction and potential stator-rotor interaction. In this paper, the mechanism of unsteady potential interaction and wake interaction in the stator-rotor stage flow is numerically investigated in two-dimensional view point. The numerical technique used is the upwind scheme of Van Leer's Flux Vector Splitting(FVS) and cubic spline interpolation is applied on zonal interface. Then, the flow field of a compressor stage composed of NACA 65410 is analyzed. Flow fields are found to be simulated reasonably by this method and the sensitivity due to back-pressure variation is more stronger than rotor-velocity variation.

Three-Dimensional Flow Visualization of Pulsatile Flow in a Branching Model using the PIV System (PIV를 이용한 분지관모델내 3차원 맥동유동의 가시화)

  • Sung, Sun-Kyung;Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.748-753
    • /
    • 2001
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCO camera for the image processing at several cross section. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

Effect of crystal and crucible rotations on the mass transfer in magnetohydrodynamic Czochralski crystal growth of silicon (자기장이 가하여진 초크랄스키 실리콘 단결정 성장에서 질량전달에 미치는 성장결정과 도가니의 회전효과)

  • 김창녕
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.536-547
    • /
    • 1997
  • For various angular velocities of crucible and crystal, the characteristics of melt flows, temperatures and concentrations of oxygen are numerically studied in the Czochralski furnace with a uniform axial magnetic field. Buoyancy effect due to the heating of crucible wall and thermocapillary effect due to the temperature gradient at the free surface, can be differentiably suppressed by the centrifugal forces due to the rotations of the crucible and crystal. The most important factor which yields the centrifugal forces is the rotation velocity of the crucible, that influences the fields of velocities, temperatures and concentrations. In the case that the crucible rotation velocity is not high, the rotations of the crystal gives rise to the centrifugal forces effectively.

  • PDF

COMPUTATIONAL STUDY FOR PERFORMANCE EVALUATION OF FLOW CHANNELS INSIDE CDI UNIT CELL (수치모사를 이용한 CDI Unit Cell 내부의 유로성능 평가)

  • Sohn, D.Y.;Choi, Y.H.;Park, D.W.;Jung, C.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.31-36
    • /
    • 2010
  • In the present study, computations for flow fields inside the CDI unit cells with electrodes and spacers have been made to evaluate their performance. Three types of unit cells that include a planar type, a serpentine channel type, and a spiral wound type were considered and their flow characteristics were compared. From the computational results, it is found that the serpentine channel type has a large flow resistance and can not guarantee the outflow flux for industrial applications. On the other hand, the planar type can sustain a large enough outflow flux but it's efficiency is low for the electrode-use because of the non-uniform velocity distribution inside the cell and dead zones in every corner. Finally, The spiral wound type has not only a large outflow flux as much as the planar type has, but also a high efficiency for the electrode-use because of uniform velocity distribution. From this comparison, we can expect that the spiral wound type of CDI unit cell would have a high performance deionization capability.

Stress intensity factor of semi-infinite parallel crack propagated with constant velocity in dissimilar orthotropic strip under out-of-plane deformation (상이한 직교이방성 띠판에 대한 면외변형 하의 반무한 등속 평행균열에서의 응력확대계수)

  • Park, Jae-Wan;Kwon, Yong-Su;Jeong, Jae-Tack;Choi, Sung-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.447-456
    • /
    • 1997
  • Stress intensity factor of semi-infinite parallel crack propagation with constant velocity in dissimilar orthotropic strip under out-of-plane clamped desplacement is investigated. Using Fourier integral transforms the boundary value problem is derived by a pair of dual integral equation and finally reduced to a single Wiener-Hopf equation. By applying Wiener-Hopf technique the equation is solved. Applying this result the asymptotic stress fields near the crack tip are determined, from which the stress intensity factor is obtained in closed form. The more the ratio of anisotropy or the ratio of bi-material shear modulus increase in the main material including the crack, the more the stress intensity factor increases. Discontinuity in the stress intensity factor is found as the parallel crack approaches the interface. In special case, the results of isotropic materials agree well with those by the previous researchers.

SPIN LOSS ANALYSIS OF FRICTION DRIVES: SPHERICAL AND SEMI-SPHERICAL CVT

  • Kim, J.;Choi, K.-H.
    • International Journal of Automotive Technology
    • /
    • v.4 no.4
    • /
    • pp.165-172
    • /
    • 2003
  • This article deals with the spin loss analysis of friction drive CVTs, especially for the cases of S-CVT and SS-CVT. There are two main sources of power loss resulting from slippage in the friction drive CVT, spin and slip loss. Spin loss, which is also a main design issue in traction drives, results from the elastic contact deformation of rotating bodies having different rotational velocities. The structure and operating principles of the S-CVT and SS-CVT are first reviewed briefly. And to analyze the losses resulting from slippage, we reviewed previous analyses of the friction mechanism. A modified classical friction model is proposed, which describes the friction behavior including Stribeck (i.e., pre-sliding) effect. It is also performed an in-depth study for the velocity fields generated at the contact regions along with a Hertzian analysis of deflection. Hertzian results were employed to construct the geometric parameters and normal pressure distributions of the contact surface with respect to elastic and plastic deformations. With analytic formulations of the relative velocity field, deflection, and friction mechanism of the S-CVT and SS-CVT, quantitative analyses of spin loss for each case are carried out. As a result, explicit models of spin loss were developed.

Oceanic Variables extracted from Along-Track Interferometric SAR Data

  • Kim, Duk-Jin;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.429-434
    • /
    • 2002
  • The Synthetic Aperture Radar (SAR) data are considered to contain the greatest amount of information among various microwave techniques developed for measuring ocean variables from aircraft or satellites. They have the potential of measuring wavelength, wave direction and wave height of the ocean waves. But, it is difficult to retrieve significant ocean wave heights and surface current from conventional SAR data, since the imaging mechanism of ocean waves by a SAR is determined by the three basic modulation processes arise through the tilt modulation, hydrodynamic modulation and velocity bunching which are poorly known functions. Along-Track Interferometric (ATI) SAR systems can directly detect the Doppler shift associated with each pixel of a SAR image and have been used to estimate wave fields and surface currents. However, the Doppler shift is not simply proportional to the component of the mean surface current. It includes also contributions associated with the phase velocity of the Brags waves and orbital motions of all ocean waves that are longer than Brags waves. In this paper, we have developed a new method for extracting the surface current vector using multiple-frequency (L- & C-band) ATI SAR data, and have generated surface wave height information.

  • PDF

A Change of Three-Dimensional Vortical Structures by an Air Spoiler in the Wake of a Road Vehicle (에어 스포일러 장착에 따른 자동차 후류 3차원 와 구조의 변화)

  • Kim Jin-Seok;Sung Jae-Yong;Kim Sung-Cho;Kim Jeong-Soo
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.56-61
    • /
    • 2006
  • A change of three-dimensional vortical structures on the wake behind a road vehicle has been investigated according to the existence of an air spoiler. To reconstruct the three-dimensional velocity fields, two-dimensional PIV(particle image velocimetry) measurements were performed for lots of the x-y, y-z and z-x planes. Since the isovorticity surface does not represent exactly the vortical structures within the recirculation region due to strong shear flows, the velocity component normal to the x-y plane is obtained by interpolating those velocities in the z-x plane. Then, the ${\lambda}_2-definition$ is applied to visualize the vortices in the recirculation region. As a result, it is found that the air spoiler weakens C-pillar vortices and produces strong wing-tip vortices. Inside the recirculation region, the height and volume of coherent vortices are increased relatively when an air spoiler is equipped. On the other hand, two small coherent vortices are observed in case that an air spoiler is absent.

  • PDF

The Characteristics of the Ionic Wind Generation with Corona Electrodes Installed in Form of the Ring (환형 배치된 코로나 전극에 의한 이온풍 발생 특성)

  • Kim, Jin-Gyu;Jung, Jae-Seung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.2
    • /
    • pp.54-59
    • /
    • 2014
  • The electric power can be converted into the mechanical power by a corona discharge system. This way has not stronger force than a electric motor. But it has been applied in various industrial fields because of many advantages, no moving parts, smaller noise, simpler structure, minimizing et al. In this paper, corona discharge system with multiple corona electrode installed in form of the ring, has been studied by focusing on the electrical and mechanical characteristics. Intensity of the corona discharge depends on applied electric field, and electric field is related to the applied voltage, discharge gap spacing(s), distance between each corona electrodes(d). As a result, in the case d/s=0.9, most intensive discharge occurred in this experiments. In the region of d/s<0.9, ionic wind velocity has saturation value in spite of decreasing corona current, because each ion velocities increase by the increasing electric field.

COHERENT STRUCTURES IN DEVELOPING FLOW OVER A WAVY WALL (파형벽면이 있는 채널 유동의 응집 구조 연구)

  • Chang, Kyoung-Sik
    • Journal of computational fluids engineering
    • /
    • v.17 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • The present study focuses on the case of developing flow with in a channel containing a long array of sinusoidal waves (2a/${\lambda}$=0.1, ${\lambda}$=h, ${\lambda}$ is the wavelength, 2a is the wave height, h is the mean channel depth) at the bottom wall. The Reynolds number defined with channel height, h and the mean velocity, U, is Re=6,700. The channel is sufficiently long such that transition is completed and the flow is fully developed over the downstream half of the channel. For the case of an incoming steady flow with no resolved turbulence, the instantaneous flow fields in the transition region are characterized by the formation of arrays of highly-organized large-scale hairpin vortices whose dimensions scale with that of the roughness elements. The paper explains the mechanism for the formation of these arrays of hairpin vortices and shows these eddies play the primary role in the formation of the large-scale streaks of high and low velocity over the wavy wall region. The presence of resolved turbulence in the incoming flow, reduces the streamwise distance needed for the streaks to develop over the wavy region, but does not affect qualitatively the transition process. In the fully-developed region, isolated and trains of large-scale hairpins play an important role in the dynamics of the streaks over the wavy wall.