• Title/Summary/Keyword: vehicular safety communications

Search Result 32, Processing Time 0.024 seconds

Measurement of Radio Characteristics of Vehicular Communication Environments in Urban Areas and Implementation Issues (도심 차량통신환경에서의 전파특성 측정과 구현 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.9
    • /
    • pp.1057-1062
    • /
    • 2014
  • Vehicular communications can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In this paper, we represent measurement results of radio characteristics of vehicular communications using IEEE 802.11p based system in urban environments. Radio characteristics are based on the packet error rate (PER) and received spectrum mask. Using measurement results, we discuss implementation issues of vehicular communication systems for supporting reliable services.

Artificial neural network for safety information dissemination in vehicle-to-internet networks

  • Ramesh B. Koti;Mahabaleshwar S. Kakkasageri;Rajani S. Pujar
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1065-1078
    • /
    • 2023
  • In vehicular networks, diverse safety information can be shared among vehicles through internet connections. In vehicle-to-internet communications, vehicles on the road are wirelessly connected to different cloud networks, thereby accelerating safety information exchange. Onboard sensors acquire traffic-related information, and reliable intermediate nodes and network services, such as navigational facilities, allow to transmit safety information to distant target vehicles and stations. Using vehicle-to-network communications, we minimize delays and achieve high accuracy through consistent connectivity links. Our proposed approach uses intermediate nodes with two-hop separation to forward information. Target vehicle detection and routing of safety information are performed using machine learning algorithms. Compared with existing vehicle-to-internet solutions, our approach provides substantial improvements by reducing latency, packet drop, and overhead.

A New Congestion Control Algorithm for Vehicle to Vehicle Safety Communications (차량 안전 통신을 위한 새로운 혼잡 제어 알고리즘 제안)

  • Yi, Wonjae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.125-132
    • /
    • 2017
  • Vehicular safety service reduces traffic accidents and traffic congestion by informing drivers in advance of threats that may occur while driving using vehicle-to-vehicle (V2V) communications in a wireless environment. For vehicle safety services, every vehicle must broadcasts a Basic Safety Message(BSM) periodically. In congested traffic areas, however, network congestion can easily happen, reduce the message delivery ratio, increase end-to-end delay and destabilize vehicular safety service system. In this paper, to solve the network congestion problem in vehicle safety communications, we approximate the relationship between channel busy ratio and the number of vehicles and use it to estimate the total network congestion. We propose a new context-aware transmit power control algorithm which controls the transmission power based on total network congestion. The performance of the proposed algorithm is evaluated using Qualnet, a network simulator. As a result, the estimation of total network congestion is accurately approximated except in specific scenarios, and the packet error rate in vehicle safety communication is reduced through transmit power control.

Vehicular Cyber-Physical Systems for Smart Road Networks

  • Jeong, Jaehoon Paul;Lee, Eunseok
    • Information and Communications Magazine
    • /
    • v.31 no.3
    • /
    • pp.103-116
    • /
    • 2014
  • This paper proposes the design of Vehicular Cyber-Physical Systems (called VCPS) based on vehicular cloud for smart road networks. Our VCPS realizes mobile cloud computing services where vehicles themselves or mobile devices (e.g., smartphones and tablets of drivers or passengers in vehicles) play a role of both cloud server and cloud client in the vehicular cloud. First, this paper describes the architecture of vehicular networks for VCPS and the delay modeling for the event prediction and data delivery, such as a mobile node's travel delay along its navigation path and the packet delivery delay in vehicular networks. Second, the paper explains two VCPS applications as smart road services for the driving efficiency and safety through the vehicular cloud, such as interactive navigation and pedestrian protection. Last, the paper discusses further research issues for VCPS for smart road networks.

Wireless Access Technologies for Smart Highway: Requirements and Preliminary Results (스마트하이웨이 무선전송기술: 요구사항 및 기본시험결과)

  • Cho, Woong;Oh, Hyun-Seo;Park, Byoung-Joo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.2
    • /
    • pp.237-244
    • /
    • 2011
  • Vehicular communications extend their application areas by combining communication technologies with roads/vehicles, and one of major applications is Smart Highway project. Smart Highway is a new advanced highway system which enhances the current highway system in Korea by improving reliability, safety and convenience. In this paper, we introduce wireless access technologies for vehicular communications especially focusing on Smart Highway. We first introduce the overall communication system architecture and the basic service and communication requirements for Smart Highway. Then, we discuss wireless access technologies including L2-level hand-over scheme. In addition, the results of experimental measurements of Wireless Access in Vehicular Environments (WAVE) system are introduced.

A Regional Certificate Revocation List Distribution Method based on the Local Vehicle Location Registration for Vehicular Communications

  • Hong, Hwi-Seung;Kim, Hyun-Gon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.91-99
    • /
    • 2016
  • A certificate revocation list(CRL) should be distributed quickly to all the vehicles in the network to protect them from malicious users and malfunctioning equipments as well as to increase the overall security and safety of vehicular networks. However, a major challenge is how to distribute CRLs efficiently. In this paper, we propose a novel Regional CRL distribution method based on the vehicle location registration locally to manage vehicle mobility. The method makes Regional CRLs based on the vehicles' location and distributes them, which can reduce CRL size and distribution time efficiently. According to the simulation results, the proposed method's signaling performance of vehicle's registration is enhanced from 22% to 37% compared to the existing Regional CRL distribution method. It's CRL distribution time is also decreased from 37% to 67% compared to the existing Full CRL distribution method.

Junction-assisted Routing Protocol for Vehicular Ad Hoc Networks in City Environments

  • Pangwei, Pangwei;Kum, Dong-Won;Cho, You-Ze
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9A
    • /
    • pp.882-888
    • /
    • 2010
  • Vehicular Ad-Hoc Networks (VANETs) using inter-vehicle communication can potentially enhance traffic safety and facilitate many vehicular applications. Therefore, this paper proposes an inter-vehicle routing protocol called Junction-Assisted Routing (JAR) that uses fixed junction nodes to create the routing paths for VANETs in city environments. JAR is a proactive routing protocol that uses the Expected Transmission Count (ETC) for the road segment between two neighbor junctions as the routing paths between junction nodes. Simulation results showed that the proposed JAR protocol could outperform existing routing protocols in terms of the packet delivery ratio and average packet delay.

Algorithm Design and Implementation for Safe Left Turn at an Intersection Based on Vehicle-to-Vehicle Communications (교차로에서의 안전 좌회전을 위한 차량간 통신 기반 알고리즘 설계 및 구현)

  • Seo, Hyun-Soo;Kim, Hyo-Un;Noh, Dong-Gyu;Lee, Sang-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.2
    • /
    • pp.165-171
    • /
    • 2013
  • WAVE(Wireless Access in Vehicular Environments) is a representative V2V communication protocol and its standards of MAC and PHY parts except for security were published. In order to control traffic flow and ensure driver's safety using V2V communication, various projects are conducting. In particular, safety application has been researched. Therefore, in this paper, we designed the safety application algorithm, which informs a driver of the dangerous status when driver tries to turn left in an intersection and we also implemented the algorithm. Proposed algorithm configures a model for a host vehicle and a vehicle coming in opposite lane and in case that there is collision hazard it provides warning message to driver by using HMI. In order to evaluate the proposed algorithm's performance, we configured the test bed using test vehicles and we tested the algorithm on proving ground with the composed test scenarios. As test results, our system showed excellent performance. If the infrastructures for V2I communications are constructed, we will optimize our system more precisely and stably.

A study on the Analysis of Radio Characteristics about Communication Mode in a Road (공용도로에서의 통신방식에 대한 전파특성 분석 연구)

  • Choi, Gi-Do;Lim, Ki-Taek;Cho, Hyung-Rae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.15 no.1
    • /
    • pp.95-101
    • /
    • 2016
  • Vehicular communications is system which can be applied for transmission of various safety messages or Intelligent Transportation Systems(ITS) applications by combining vehicle/road technology with Information and Communication Technology(ICT). In recent years, a variety of ITS services are available such as driving information, road conditions, V2X messages as well as navigation and traffic jams notification. In general, vehicular communications can be used for vehicle-to-vehicle and vehicle-to-infrastructure communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments. In this paper, WAVE communication standard based on the IEEE802.11p is explained and signal characteristics in WAVE communication is introduced. Also, The H/W and S/W characteristics in Road Side Station and On Board Equipment for the Vehicle to Everything communication are analyzed. Received Signal Strength which is power of receiving signal of communication equipment is measured in test road to estimate the real WAVE communication's performance. It is shown that the implemented WAVE communication technology is satisfactory to provide ITS services.

Certificate Revocation Scheme using MOT Protocol over T-DMB Infrastructure

  • Kim, Hyun-Gon;Kim, Min-Soo;Jung, Seok-Won;Seo, Jae-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1583-1590
    • /
    • 2011
  • A Certificate Revocation List(CRL) should be distributed quickly to all the vehicles for vehicular communications to protect them from malicious users and malfunctioning equipment as well as to increase the overall security and safety of vehicular networks. Thus, a major challenge in vehicular networks is how to efficiently distribute CRLs. This paper proposes a Multimedia Object Transfer(MOT) protocol based on CRL distribution scheme over T-DMB infrastructure. To complete the proposed scheme, a handoff method, CRL encoding rules based on the MOT protocol, and relative comparison are presented. The scheme can broaden breadth of network coverage and can get real-time delivery with enhanced transmission reliability. Even if road side units are sparsely deployed or, even not deployed, vehicles can obtain recent CRLs from T-DMB infrastructure effectively.