• Title/Summary/Keyword: vehicle to grid

Search Result 243, Processing Time 0.025 seconds

Design of 11kW OBC considering V2G for electric vehicle (V2G를 고려한 전기자동차용 11kW급 OBC의 설계)

  • Choo, Kyoung-min;Won, Il-Kuen;Kim, do-yun;Kim, young-real;Won, chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.71-72
    • /
    • 2016
  • Vehicle-to-grid (V2G) 시스템에서의 전기자동차는 계통의 에너지 저장장치로서 이용되는데 여기서 계통과 전기자동차의 에너지 교환을 위해서는 양방향 컨버터가 필요하다. 이 논문에서는 BSS-FBC (Bidirectional Single-Stage Full-Bridge Converter)를 이용하여 V2G가 가능한 전기자동차용 11kW급 OBC를 설계하였다.

  • PDF

A study on Flow Characteristic inside Passenger's Compartment under Recirculation Cool vent mode using CFX (CFX를 이용한 내부순환모드에서의 자동차 내부 유동특성 연구)

  • Kim, Yoon-Kee;Yang, Jang-Sik;Kim, Kyung-Chun;Ji, Ho-Seong
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.25-30
    • /
    • 2010
  • The flow characteristics under recirculation cool vent mode is numerically studied using commercial fluid dynamic code(CFX). For the reliable analysis, real vehicle and human FE model is employed in grid generation process. The geometrical location and shape of panel vent, and exhaust vent is set as that of real vehicle model. The flowrate of the working fluid is determined as 330CMH which is equivalent to 70 percent of maximum capacity of HVAC system. The high velocity regions are formed around 4 each panel vent. Because of the non-symmetrically located exhaust, non-uniform flow and partial backflow near the door trim is observed. Streaklines start from each panel vent show the flow pattern of the airflow in the passenger's compartment very well.

An Efficient Clustering Algorithm for Massive GPS Trajectory Data (대용량 GPS 궤적 데이터를 위한 효율적인 클러스터링)

  • Kim, Taeyong;Park, Bokuk;Park, Jinkwan;Cho, Hwan-Gue
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.40-46
    • /
    • 2016
  • Digital road map generation is primarily based on artificial satellite photographing or in-site manual survey work. Therefore, these map generation procedures require a lot of time and a large budget to create and update road maps. Consequently, people have tried to develop automated map generation systems using GPS trajectory data sets obtained by public vehicles. A fundamental problem in this road generation procedure involves the extraction of representative trajectory such as main roads. Extracting a representative trajectory requires the base data set of piecewise line segments(GPS-trajectories), which have close starting and ending points. So, geometrically similar trajectories are selected for clustering before extracting one representative trajectory from among them. This paper proposes a new divide- and-conquer approach by partitioning the whole map region into regular grid sub-spaces. We then try to find similar trajectories by sweeping. Also, we applied the $Fr{\acute{e}}chet$ distance measure to compute the similarity between a pair of trajectories. We conducted experiments using a set of real GPS data with more than 500 vehicle trajectories obtained from Gangnam-gu, Seoul. The experiment shows that our grid partitioning approach is fast and stable and can be used in real applications for vehicle trajectory clustering.

Numerical simulation of tip clearance impact on a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Wei, Jing;Pan, Yipeng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • Numerical simulation based on the Reynolds Averaged Naviere-Stokes (RANS) Computational Fluid Dynamics (CFD) method had been carried out with the commercial code ANSYS CFX. The structured grid and SST $k-{\omega}$ turbulence model had been adopted. The impact of non-condensable gas (NCG) on cavitation performance had been introduced into the Schnerr and Sauer cavitation model. The numerical investigation of cavitating flow of marine propeller E779A was carried out with different advance ratios and cavitation numbers to verify the numerical simulation method. Tip clearance effects on the performance of pumpjet propulsor had been investigated. Results showed that the structure and characteristics of the tip leakage vortex and the efficiency of the propulsor dropped more sharply with the increase of the tip clearance size. Furthermore, the numerical simulation of tip clearance cavitation of pumpjet propulsor had been presented with different rotational speed and tip clearance size. The mechanism of tip clearance cavitation causing a further loss of the efficiency had been studied. The influence of rotational speed and tip clearance size on tip clearance cavitation had been investigated.

Sub- Breaking Analysis of Free Surface Flows by the Numerical Simulation (수치 시뮬레이션을 통한 자유표면 유동의 Sub-Breaking 해석)

  • Kwag, Seung-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.753-757
    • /
    • 2004
  • The free-surface flow is simulated to make clear the viscous interaction of stem waves and the sub-breaking phenomena around a high speed vehicle. The Navier-Stokes equation is solved by a finite difference method where the body-fitted coordinate system, the wall function and the triple-grid system are invoked They are applied to study precisely on the stem flow of S-103 as to which extensive experimental data are available. Computations are extended to the submerged revolutional body. The numerical result shows that the gradient of M/Us is greatly influenced by the submerged depth And the stem wave is influenced by the separation due to the bow wave.

Current Ripple Reduction Method of 3-phase Interleaved Bidirectional DC-DC Converter with the Consideration of Input and Output Voltage Variation (입·출력 전압 변동을 고려한 3상 인터리브드 양방향 DC-DC컨버터의 전류리플 저감 기법)

  • Sun, Daun;Jung, Jae-Hun;Nho, Eui-Cheol;Joung, Gyu-Bum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.427-433
    • /
    • 2016
  • This paper proposes a new method for the current ripple reduction of a three-phase interleaved bidirectional DC-DC converter. Usually, the three-phase interleaved bidirectional DC-DC converter is used for battery charging and discharging to reduce battery current ripple. In V2G application, a PWM AC-DC converter is used to connect the AC power grid and three-phase interleaved bidirectional DC-DC converter for battery charging and discharging. The magnitude of DC link voltage affects the battery current ripple magnitude. Therefore, the magnitude of the battery ripple current is analyzed with variations of battery and DC link voltages. The ripple current magnitude is found to be minimized by controlling the DC link voltage. Simulation and experimental results show the usefulness of the proposed method.

Parallel Operation Control Method of Grid-connected Inverters with Seamless Transfer for Energy Storage System in Microgrid (마이크로그리드에서 에너지 저장시스템을 위한 무순단 절체 기능을 갖는 계통연계형 인버터의 병렬운전 제어기법)

  • Park, Sung-Youl;Kim, Joo-Ha;Jung, Ah-Jin;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.200-206
    • /
    • 2016
  • In the microgrid, inverters for energy storage system are generally constructed in a parallel structure because of capacity expandability, convenience of system maintenance, and reliability improvement. Parallel inverters are required to provide stable voltage to the critical load in PCC and to accurately share the current between each inverter. Furthermore, when islanding occurs, the inverters should change its operating mode from grid-connected mode to stand-alone mode. However, during clearing time and control mode change, the conventional control method has a negative impact on the critical load, that is, severe fluctuating voltage. In this study, a parallel operation control method is proposed. This method provides seamless mode transfer for the entire transition period, including clearing time and control mode change, and has accurate current sharing between each inverter. The proposed control method is validated through simulation and experiment.

A Study on Feedforward Compensation Method of IPMSM for EV with Non-sinusoidal BEMF (비 정현파 역기전압을 가지는 EV용 IPMSM의 전향보상 제어기법에 관한 연구)

  • Park, Gui-Yeo;Park, Jung-Woo;Ahn, Won-Il;Shin, Duck-Woong;Jeong, Moon-Seon;Moon, Chae-Joo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.573-578
    • /
    • 2013
  • In the case of the Back EMF voltage contains the harmonics, the motor torque ripple and vibration is occurred by the current pulsation, because IPMSM control algorithm is the model which is assumed that it contains a sinusoidal Back EMF voltage. To improve ride quality, in the case of IPMSM for EV, improving the torque control characteristics is necessary. Therefore, there is a need to minimize the influence of the harmonics. In this paper, the investigation to decrease the current distortion factor has been performed for improving torque control characteristics by applying the non-sinusoidal Back EMF to IPMSM model.

An Emission-Aware Day-Ahead Power Scheduling System for Internet of Energy

  • Huang, Chenn-Jung;Hu, Kai-Wen;Liu, An-Feng;Chen, Liang-Chun;Chen, Chih-Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4988-5012
    • /
    • 2019
  • As a subset of the Internet of Things, the Internet of Energy (IoE) is expected to tackle the problems faced by the current smart grid framework. Notably, the conventional day-ahead power scheduling of the smart grid should be redesigned in the IoE architecture to take into consideration the intermittence of scattered renewable generations, large amounts of power consumption data, and the uncertainty of the arrival time of electric vehicles (EVs). Accordingly, a day-ahead power scheduling system for the future IoE is proposed in this research to maximize the usage of distributed renewables and reduce carbon emission caused by the traditional power generation. Meanwhile, flexible charging mechanism of EVs is employed to provide preferred charging options for moving EVs and flatten the load profile simultaneously. The simulation results revealed that the proposed power scheduling mechanism not only achieves emission reduction and balances power load and supply effectively, but also fits each individual EV user's preference.

Active Distribution System Planning Considering Battery Swapping Station for Low-carbon Objective using Immune Binary Firefly Algorithm

  • Shi, Ji-Ying;Li, Ya-Jing;Xue, Fei;Ling, Le-Tao;Liu, Wen-An;Yuan, Da-Ling;Yang, Ting
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.580-590
    • /
    • 2018
  • Active distribution system (ADS) considering distributed generation (DG) and electric vehicle (EV) is an effective way to cut carbon emission and improve system benefits. ADS is an evolving, complex and uncertain system, thus comprehensive model and effective optimization algorithms are needed. Battery swapping station (BSS) for EV service is an essential type of flexible load (FL). This paper establishes ADS planning model considering BSS firstly for the minimization of total cost including feeder investment, operation and maintenance, net loss and carbon tax. Meanwhile, immune binary firefly algorithm (IBFA) is proposed to optimize ADS planning. Firefly algorithm (FA) is a novel intelligent algorithm with simple structure and good convergence. By involving biological immune system into FA, IBFA adjusts antibody population scale to increase diversity and global search capability. To validate proposed algorithm, IBFA is compared with particle swarm optimization (PSO) algorithm on IEEE 39-bus system. The results prove that IBFA performs better than PSO in global search and convergence in ADS planning.