본 논문에서는 차량의 식별마크 분류 및 차량번호판 인식을 통한 차량인식 알고리즘을 제안하였다. 제안한 알고리즘에서는 먼저 입력 차량영상으로 부터 잡음제거, 세선화 과정 등 전처리 과정들을 수행하고 명암값 변화 빈도 분포를 사용하여 차량식별마크와 번호판 영역을 추출하였다. 또한 추출된 후보 영역으로부터 차량 식별마크와 번호판 영역의 구조적 특성 정보를 사용하여 차량 식별마크, 번호판의 문자 및 숫자를 분류하였으며, 하이브리드 패턴벡터 및 수직수평 패턴벡터를 사용하여 식별마크, 문자 및 숫자를 인식하여 차량 정보 인식율을 개선하였다. 제안한 알고리즘에서는 차량의 식별마크가 차량의 종류에 따라 독립적인 특성, 식별마크와 번호판 영역에서는 문자와 배경이 뚜렷하게 구별되는 특성 및 수평 및 수직빈도수 분포가 식별마크 및 번호판 이외의 영역과 뚜렷이 구별된다는 특성들을 이용하였다. 제안한 방법의 성능을 확인하기 위하여 다양한 환경에서 촬영된 350여개의 영상에 대하여 차량인식 실험을 수행하였고 제안한 방법이 차량번호판의 크기와 위치에 무관하고 잡음의 영향에 덜 민감하였을 뿐만 아니라 불규칙적인 외부환경에서도 인식율이 개선되었다. 또한 식별마크와 번호판 인식의 실시간 처리가 가능하여 실제 주차장이나 도시화도로등에 적용이 가능하다.
본 논문은 고성능의 서버 없이 안드로이드 스마트폰 단독으로 동작할 수 있도록 경량화 딥러닝 모델을 사용하여 구현한 자동차 번호판 인식 시스템을 제안한다. 자동차 번호판 인식시스템은 [번호판검출]-[문자영역 분할]-[문자인식]으로 3단계의 과정으로 구성되며, 번호판검출은 SSD-Mobilenet, 문자영역 분할은 ResNet에 localization을 추가하여 사용하였고 문자인식은 ResNet을 이용하여 구현하였다. 테스트한 기기는 삼성 갤럭시 S7, LG Q9이며 정확도는 약 85.3%, 실행속도는 약 1.1초가 소요된다.
자동차 수의 급증으로 야기되는 교통혼잡, 교통사고, 주차난 등의 많은 문제에 효율적으로 대응하기 위해서는 제한된 인력과 비용을 사용하는 자동차 관리가 필수적인데 이를 위한 많은 연구들이 국내외적으로 현재 진행되고 있다. 현재 진행되고 있는 여러 연구 분야 중에서 특히 자동차의 차량번호판인식 기술은 법규위반 차량 식별, 통행료 징수, 자동차세 징수, 도난 도주 차량 확인 및 주차 관리 등의 많은 분야에 응용되고 있다. 자동차의 차량번호판 문자 인식 문제와 같이 훈련예제 수집 비용이 많이 드는 경우에 제한된 수의 훈련예제를 최대한 활용하여 분류성능을 향상시키기 위한 방안의 하나로, 수집된 훈련예제들로부터 가상의 예제를 생성하고, 생성된 가상예제를 훈련예제로 추가하여 학습하는 여러 연구가 수행된 바 있다. 본 논문에서는 차량번호판 문자 인식의 성능 향상을 위해 수집된 예제들을 적절히 병합하여 가상의 예제를 생성하는 방안에 관해 기술하고, 문자인식 분야에서 일반적으로 많이 사용되는 여러 알고리즘에 대하여 다양한 가상예제 생성방안 및 다양한 생성비율에 따른 실험을 통해 그 효용성을 확인한다.
본 연구에서는 Convolutional Neural Networks(CNNs) 기법을 이용하여 차량 번호판을 인식하는 방법을 제시하였다. 차량 번호판은 일반적으로 차량의 공식 식별 목적으로 사용됩니다. 대부분의 일반적인 광학 문자 인식(OCR) 기술은 문서에 인쇄된 문자를 인식하는 데는 효과적이지만 번호판의 등록 번호는 식별할 수 없다. 그리고 번호판 감지에 대한 기존 접근 방식에서는 차량이 움직이지 않고 정지해 있어야 한다. 번호판 감지에 대한 이러한 문제를 해결하기 위해 CNN 기법을 활용한 번호판 인식 기법을 제안한다. 먼저 획득된 차량 번호판 이미지의 데이터베이스를 생성하고 CNN 기법을 활용하여 자동차 번호판 문자를 인식한다. 본 연구의 결과는 주차관리 시스템과 단속 카메라 등에 유용하게 활용 될 수 있다.
본 논문에서는 차량 번호판에서 추출된 문자영역의 DCT(Digital Cosine Transform) 계수와 LVQ(Learning Vector quantization) 신경회로망을 이용하여 상대적으로 간결한 구조로 잡음의 영향을 적게 받는 차량 번호판 인식 시스템을 제안하였다. 입력된 차량영상의 RGB칼라정보를 이용하여 번호판 영역을 추출하고 추출된 번호판의 히스토그램과 문자의 상대적 위치정보를 병합하여 문자영역을 추출하였다. 이렇게 추출된 문자영역의 명암도 영상에 DCT를 적용하여 얻은 특징 벡터를 LVQ신경회로망의 입력으로 사용하여 인식 과정을 수행한다. 본 논문의 실험과정에서는 다양한 환경에서 촬영된 109대의 자가용 차량영상에 대하여 제안된 시스템을 실험하였으며 상대적으로 높은 번호판 영역 추출율과 인식률을 보였다.
본 논문에서는 차량에 부착된 번호 판을 컴퓨터에 입력한 후 이를 색 분해법과 역전파 신경망을 이용하여 자동차 번호를 고속으로 추출할 수 있는 방법을 제시하였다. 칼라 비디오 카메라에 의해 컴퓨터에 입력되는 자동차의 동화상을 R, G, B 신호로 분리한 후 승용차의 번호판 색상을 이용하여 R, G ,B의 각 농도에 맞는 임계치를 설정하여 2치화 시켜 번호판 영역을 추출한 후에 2 치화된 이 화상 신호를 프레임 버퍼에 기록하여 컴퓨터의 화상 데이터로 입력시켰다. 그리고 문자 인식 알고리즘을 적용한 후 문자 인식을 개선시키기 위해 역전파 신경 회로망을 적용하여 차랑 번호판 인식 시스템을 구현하였다. 또한 주변의 유사 색상의 존재로 인한 흔돈을 극소화시키기 위해 차량 번호판의 직사각형 구조를 이용하여 수평.수직선 추출 알고리즘을 사용하였으며 실험 결과 고속으로 차량 번호판 추출 및 인식이 가능함을 보였다.
자동차의 번호판을 인식하는 것은 차량을 식별하는데 있어서 매우 중요하다. 어두운 조명에서나 날씨가 나쁠 경우 차량의 형상이 왜곡 될 수 있고, 번호판을 식별하는데 어려움이 있다. 본 논문은 차량의 규격을 이용하여 효율적으로 번호판을 추출하는 방법을 제안한다. 이 방법에서 색상이나 형태처럼 차량의 규격을 따르는 자동차 번호판의 특징들은 번호판의 후보영역으로 결정되고, 신경망에 의해 숫자나 문자의 패턴 갖는 영역이 번호판 영역으로 인식된다. 또한 특징패턴인식의 결과로서 번호판을 확정하였다. 70개 차량영상을 실험해 본 결과 번호판 추출률에서는 84.29 %, 인식률에서는 80.81 %의 결과를 나타내었다.
자동차의 번호판을 인식하는 것은 차량을 식별하는데 있어서 매우 중요하다. 어두운 조명에서나 날씨가 나쁠 경우 차량의 형상이 왜곡 될 수 있고, 번호판을 식별하는데 어려움이 있다. 본 논문은 차량의 규격을 이용하여 효율적으로 번호판을 추출하는 방법을 제안한다. 이 방법에서 색상이나 형태처럼 차량의 규격을 따르는 자동차 번호판의 특징들은 번호판의 후보영역으로 결정되고, 신경망에 의해 숫자나 문자의 패턴 갖는 영역이 번호판 영역으로 인식된다. 또한 특징패턴인식의 결과로서 번호판을 확정하였다. 70개 차량영상을 실험해 본 결과 번호판 추출률에서는 84.29 %, 인식률에서는 80.81 %의 결과를 나타내었다.
Recognizing a license plate of a vehicle has widely been issued. In this thesis, firstly, mean shift algorithm is used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate. We then present an approach to recognize a vehicle's license plate using the Fuzzy ARTMAP neural network, a relatively new architecture of the neural network family. We show that the proposed system is well to recognize the license plate and shows some compute simulations.
말레이시아 차량 번호판에는 플라스틱으로 제작된 영문 및 숫자들이 엠보싱 형태로 부착되어있으며 수평 수직방향 문자들 사이 간격이 조밀하게 배치된 경우가 많다. 따라서 조도가 낮은 차량 영상에서는 번호판 문자 획 정보 추출이 어려워질 수 있다. 본 논문에서는 저 조도에서 촬영된 말레이시아 차량 영상에서 번호판을 인식하는 알고리즘을 제안하였다. 저 조도에서 촬영된 차량 영상에서도 문자 획 연결 요소를 정확하게 추출하기 위해 DoG 필터링 기반 문자 획 생성 기법을 도입하였다. 문자 획 연결요소 해석을 통한 번호판 후보 영역을 추정한 다음 문자 영역을 분할하고 인식을 하였다. 쿠알라룸푸르 도로상에서 조명이 부착되지 않은 IR 카메라를 사용하여 주야로 촬영한 6,046장의 차량 영상을 대상으로 번호판 인식 실험을 수행하였다. 제안된 알고리즘을 이용하여 실험해 본 결과 번호판 인식 성능이 96.1%로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.