• Title/Summary/Keyword: vehicle oscillation

Search Result 49, Processing Time 0.023 seconds

Active Short Circuit Control Method to Reduce Overcurrent and Oscillation Current in PMSM (영구자석 동기모터 진동 및 과전류 저감을 위한 능동단락회로 제어 기법)

  • Choi, Jong-Won;Kim, Yoon-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.339-347
    • /
    • 2022
  • This study proposes the mitigation method for overcurrent and oscillation motor current in an active short-circuit operation. This operation is attracting attention as the safe state of electric vehicle traction inverters. However, the active short-circuit operation generates oscillation and overcurrent of motor currents during a transient state. The proposed method uses two different safe states in PMSM, such as active short circuit and freewheeling. The active short circuit is used for safe state in a steady state. To reduce the overshoot and oscillation, a freewheeling state is injected between active short-circuit operation by comparing the motor phase current with an analytically calculated steady-state motor current. Freewheeling state is only used in a transient state. The performance is demonstrated through simulations and experimental results. The peak current of the motor was reduced from 52 A to 40 A, and oscillation time was reduced.

Modeling of the Mechanical Drivetrain of an Electric Vehicle for Investigation of Torsional Oscillation Characteristics (전기자동차 기계적 구동계의 모델링 및 비틀림 진동특성 분석)

  • Kim, Ho-Gi;Oh, Joong-Seok;Kim, Sam-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.10
    • /
    • pp.866-872
    • /
    • 2008
  • Torsional oscillations of the mechanical drivetrain in electric vehicles are generated under rapid driving conditions. These lead to an uncomfortable jerking of the vehicle and to an increased stress of the mechanical components. To analyze this phenomenon, a drivetrain model is constructed with lumped parameters. The model parameters are identified by geometrical design data and experimental tests. The proposed model is validated by simulation and experimental tests in the time and the frequency domains. As a result, the torsional oscillations are observed at 7Hz of a low damped natural frequency. Also, the analysis of the effect of the parameter variations on the oscillations shows that the oscillation characteristic is mainly dependent on the rotor inertia, and the stiffness of the mounting of the drive aggregate and the driveshaft. The results will be utilized on the basis of the design of an electric drivetrain and an active control of drivetrain oscillations.

In-Car Video Stabilization using Focus of Expansion

  • Kim, Jin-Hyun;Baek, Yeul-Min;Yun, Jea-Ho;Kim, Whoi-Yul
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.12
    • /
    • pp.1536-1543
    • /
    • 2011
  • Video stabilization is a very important step for vision based applications in the vehicular technology because the accuracy of these applications such as obstacle distance estimation, lane detection and tracking can be affected by bumpy roads and oscillation of vehicle. Conventional methods suffer from either the zooming effect which caused by a camera movement or some motion of surrounding vehicles. In order to overcome this problem, we propose a novel video stabilization method using FOE(Focus of Expansion). When a vehicle moves, optical flow diffuses from the FOE and the FOE is equal to an epipole. If a vehicle moves with vibration, the position of the epipole in the two consecutive frames is changed by oscillation of the vehicle. Therefore, we carry out video stabilization using motion vector estimated from the amount of change of the epipoles. Experiment results show that the proposed method is more efficient than conventional methods.

An Experimental Study on the Transient Behavior of Vehicle Rollover (차량 롤전복의 과도거동에 관한 시험적 연구)

  • Lee, Myung-Su;Kim, Sang-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.113-121
    • /
    • 2011
  • Rollover accident is one of the serious traffic accident and rollover accident takes high portion of all accident. The most common type of rollover is a tripped rollover which occupy 95% of all type of single-vehicle rollover. Tripped rollover occurs when a vehicle leaves normal road way and tripped by loose gravel, soil of fixed object such as guard rail, curbs and ditches. And the rest of the type of rollover is un-tripped rollover. An un-tripped rollovers that occurs during high-speed collision avoidance maneuvers. In this paper, presents the explanation of the un-tripped rollover test method and procedure, additionally this paper deals with various occurrence in the un-tripped test such as occurring excessive tire camber in the un-tripped test, tire side-wall contact with road surface and roll oscillation. And this paper analyzes the analysis of the roll rate amplitude in specific frequency through the FFT (Fast Fourier Transform) and the roll angle at the steering reverse timing which is the Fishhook test roll rate feedback time. Finally, this paper analyzes the relations between the estimated steady state roll gain and rollover stability.

Vehicle traction control using fuzzy logic algorithm (퍼지 로직 알고리듬을 이용한 차량 구동력 제어)

  • 박성훈;권동수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.680-683
    • /
    • 1996
  • The dynamics of the vehicle system has highly nonlinear components such as an engine, a torque converter and variable road condition. This thesis proposes a Fuzzy Logic Algorithm that shows better control performance than Antiwindup PI in the highly nonlinear vehicle system. Traction Control System(TCS), which adjusts throttle valve opening by Fuzzy Logic Algorithm improves vehicle drivability, steerability and stability when vehicle is starting and cornering. When a throttle valve is opened at large degree, Fuzzy Logic Algorithm shows better performances like a small settling time and a small oscillation than Antiwindup PI in simulation. The decreased desired slip ratio improves steerability in the simulation when a vehicle is cornering. The Fuzzy Logic Algorithm has been tested by a 1/5-scale vehicle for tracking the constant desired velocity.

  • PDF

Reduction of the actuator oscillations in the flying vehicle under a follower force

  • Kavianipour, O.;Khoshnood, A.M.;Sadati, S.H.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.149-166
    • /
    • 2013
  • Flexible behaviors in new aerospace structures can lead to a degradation of their control and guidance system and undesired performance. The objectives of the current work are to analyze the vibration resulting from the propulsion force on a Single Stage to Orbit (SSTO) launch vehicle (LV). This is modeled as a follower force on a free-free Euler-Bernoulli beam consisting of two concentrated masses at the two free ends. Once the effects on the oscillation of the actuators are studied, a solution to reduce these oscillations will also be developed. To pursue this goal, the stability of the beam model is studied using Ritz method. It is determined that the transverse and rotary inertia of the concentrated masses cause a change in the critical follower force. A new dynamic model and an adaptive control system for an SSTO LV have been developed that allow the aerospace structure to run on its maximum bearable propulsion force with the optimum effects on the oscillation of its actuators. Simulation results show that such a control model provides an effective way to reduce the undesirable oscillations of the actuators.

Added Mass of Submerged Bodies Obtained by Forced Oscillation Tests and Numerical Calculations of Potential Flow (수중운동체의 강제동요시험 및 포텐셜 계산에 의한 부가질량 추정)

  • Kim, Dong Jin;Lee, Gyeong Joong;Kwon, Chang Seop;Kim, Yeon Gyu;Park, Jin-Yeong;Jun, Bong-Huan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.4
    • /
    • pp.214-224
    • /
    • 2022
  • It is necessary to estimate manoeuvring characteristics of submerged bodies at the design stage in order to ensure the safe operations. In this study, added mass coefficients in the mathematical model of submerged bodies are estimated by captive model tests and numerical calculations. Two kinds of models, MARIN 'BB2'submarine model and AUV (Autonomous unmanned vehicle) model are utilized in the forced oscillation tests. Compared to BB2 submarine, AUV with cylindrical type hull form shows relatively small added masses in roll, pitch, and yaw directions. Next, numerical calculations based on potential theory are performed under the assumption that viscous effects on inertia forces are negligible. Added masses obtained by numerical calculations are in good agreements with forced oscillation test results. And if slow manoeuvres of submerged bodies are presumed, some of velocity coupled terms can be approximated by combinations of added mass coefficients.

Reduced-order Mapping and Design-oriented Instability for Constant On-time Current-mode Controlled Buck Converters with a PI Compensator

  • Zhang, Xi;Xu, Jianping;Wu, Jiahui;Bao, Bocheng;Zhou, Guohua;Zhang, Kaitun
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1298-1307
    • /
    • 2017
  • The constant on-time current-mode controlled (COT-CMC) switching dc-dc converter is stable, with no subharmonic oscillation in its current loop when a voltage ripple in its outer voltage loop is ignored. However, when its output capacitance is small or its feedback gain is high, subharmonic oscillation may occur in a COT-CMC buck converter with a proportional-integral (PI) compensator. To investigate the subharmonic instability of COT-CMC buck converters with a PI compensator, an accurate reduced-order asynchronous-switching map model of a COT-CMC buck converter with a PI compensator is established. Based on this, the instability behaviors caused by output capacitance and feedback gain are investigated. Furthermore, an approximate instability condition is obtained and design-oriented stability boundaries in different circuit parameter spaces are yielded. The analysis results show that the instability of COT-CMC buck converters with a PI compensator is mainly affected by the output capacitance, output capacitor equivalent series resistance (ESR), feedback gain, current-sensing gain and constant on-time. The study results of this paper are helpful for the circuit parameter design of COT-CMC switching dc-dc converters. Experimental results are provided to verify the analysis results.

Analysis for Pressure Oscillation on the Inlet of Turbo-Pump at the Moment of Launch Vehicle Engine Startup (발사체 엔진 시동시 PSD 유무에 따른 터보펌프 입구 배관 압력 섭동 해석)

  • Jung, Youngsuk;Kim, Juwan;Park, Kwangkun;Baek, Seungwhan;Cho, Kiejoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1144-1147
    • /
    • 2017
  • It was reviewed about the pressure oscillation on the inlet of turbo-pump at the moment of engine startup and shutdown. Specially, This research was performed how much is the effect of PSD(Pogo Suppression Device) about the pressure oscillation on the inlet of turbo-pump at the moment of engine startup and shutdown. For analysis, propellant tank PSD and Engine are modelled with Flowmaster which is the commercial 1D program. As the analysis results, even though the PSD is installed in the pipeline, the pressure drop or rising at the moment of engine startup and shutdown is same compared to the case without PSD. However, it was confirmed that PSD reduces the pressure oscillation of the high frequency band as the original purpose of PSD.

  • PDF