• 제목/요약/키워드: vehicle motion control

검색결과 449건 처리시간 0.032초

VDC 장착 차량의 기동 특성에 관한 연구 (A Study on the Performance Characteristics of the VDC Vehicle)

  • 김태기;박윤기;서명원
    • 한국자동차공학회논문집
    • /
    • 제7권9호
    • /
    • pp.146-157
    • /
    • 1999
  • Safety systems for road vehicles have been rapidly developed in recent years. Especially, the VDC(Vehicle dynamics Control) system is a new active safety system for road vehicles which controls its dynamic vehicle motion in emergency situations . In the case of configuring the VDC system by utilizing the ABS(Anti-lock Brake System), the role of a control logic which directly influences the vehicle motion is very important. In this study the performance of the VDC vehicle was compared to the performances of the CBS (Conventional Brake system )and ABS vehicle. For various driving conditions , the simulation of vehicle dynamics with known VDC control logics was performed. Analysis results showed the VDC vehicle could stably perform even on the road of low coefficient of friction. In addition it was shown that the basic control logic for the VDC system could outstandingly improve driving stability in the case of braking as well as constant speed cruising.

  • PDF

반자율 무인잠수정의 제어기 설계 및 시뮬레이션 (Controller Design and Simulation of a Semi-Autonomous Underwater Vehide)

  • 전봉환;이판묵;홍석원
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.57-62
    • /
    • 2003
  • This paper describes the design and simulation of a multivariable optimal control system for the combined speed, heading and depth control of a Semi-Autonomous Underwater Vehicle (SAUV) developed in Korea Ocean Research and Development Institute (KRODI). The SAUV is a test-bed for the evaluation of the navigation and manipulator technologies developed for a mine disposal vehicle (MDV) in military use and for a light working underwater vehicle in scientific use. The vehicle was designed to control its cruising speed, heading and depth with 4 horizontal thrusters installed at the rear of the hull. Therefore, the decoupled control methods are limited to apply to the SAUV because the thrust forces are highly coupled with the surging, yawing, and pitching motion of the vehicle. The multivariable Linear Quadratic (LQ) control method is chosen to control steering and diving in variable speed motion automatically. A series of simulation is carried out with fully nonlinear six degree of freedom dynamic model to validate the controller.

  • PDF

The Development of Collision Avoidance Algorithm for Unmanned Vehicle Using Ultrasonic Range Sensors

  • Mohammad, Rahmati;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.23.1-23
    • /
    • 2001
  • The unmanned vehicle is composed of three parts the front & side sensor system for keeping the lane and avoiding obstacles, the acceleration & brake control system for longitudinal motion control, and the steering control system for the lateral motion control. Each system helps the unmanned vehicle of which should take notice of its location and recognize obstacles around the place by itself and make a decision how much fast to proceed according to circumstances. During the operation, the control strategy that the vehicle can detect obstacles and avoid collision on the road involves with vehicle velocity very much. Therefore, We have to define a traction system which is powered by DC motor so that, unmanned vehicle can control its velocity accurately. In this study, we find mechanical and ...

  • PDF

Steering Control of Autonomous Vehicle by the Vision System

  • Kim, Jung-Ha;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.91.1-91
    • /
    • 2001
  • The subject of this paper is vision system analysis of the autonomous vehicle. But, autonomous vehicle is one of the difficult topics from the point of view of several constrains on mobility, speed of vehicle and lack of environment information. Therefore, we are application of the vision system so that autonomous vehicle. Vision system of autonomous vehicle is likely to eyes of human. This paper can be divided into 2 parts. First, acceleration system and brake control system for longitudinal motion control. Second vision system of real time lane detection is for lateral motion control. This part deals lane detection method and image processing method. Finally, this paper focus on the integration of tole-operating vehicle and autonomous ...

  • PDF

기어와 유연축을 갖는 구동계로 구동되는 OTM 안테나 시선의 안정화 제어 (LOS(line-of-sight) Stabilization Control of OTM(on-the-move) Antenna Driven by Geared Flexible Transmission Mechanism)

  • 강민식;윤우현;이종비
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.951-959
    • /
    • 2011
  • In this study, an OTM(on-the-move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite while moving was addressed. Since LOS(line-of-sight) of antenna should direct satellite consistently while vehicle moving to guarantee high satellite communication quality, active antenna LOS stabilization is a core technology for OTM antenna. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. In consideration of driving mechanism which consists of gear train and flexible driving shafts, a two-mass-system dynamic model coupled with vehicle motion was presented. An internal PI-control loop + outer PI-control loop structure has been suggested in order to damp the torsional vibration and stabilize control system. The classical pole-placement method was applied to design control gains. In addition, a vehicle motion compensation control beside of the feedback control loop has been suggested to improve LOS stabilization performances. The feasibility of the proposed control design was verified along with some experimental results.

Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed

  • Li, Yong-li;Feng, Jin-fu;Hu, Jun-hua;Yang, Jian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제10권2호
    • /
    • pp.188-200
    • /
    • 2018
  • This paper proposes a single control strategy to solve the problem of trans-media vehicle difficult control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle when entering water obliquely at low speed has been founded to analyze the motion characteristics. Two methods have been used to simulate the vehicle entering water in the same condition: numerical simulation method and theoretical model solving method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The entering water motion in the conditions of different velocity, different angle, and different attack angle has been simulated by this hydrodynamic model and the simulation has been analyzed. And the change rule of the vehicle's gestures and position when entering water has been obtained by analysis. This entering water rule will guide the follow-up of a series of research, such as the underwater navigation, the exiting water process and so on.

퍼지 게인 스케쥴링을 이용한 자율 무인 잠수정의 자세 제어 (Motion Control of an AUV (Autonomous Underwater Vehicle) Using Fuzzy Gain Scheduling)

  • 박랑은;황은주;이희진;박민용
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.592-600
    • /
    • 2010
  • The problem of motion control for AUV (Autonomous Underwater Vehicles) is addressed. The utilization of such robotic vehicles has gained an increasing importance in many marine activities. In this paper the objective is to describe how to design and apply FGS (Fuzzy Gain Scheduling) PD (Proportional Derivative) controller for an AUV (Autonomous Underwater Vehicle) to control the yaw and depth of the vehicle by keeping the path of the navigation to a desired point, and/or changing the path according to a set point.

초공동 수중운동체의 조종면 조합에 따른 심도 및 직진 제어성능 분석 (Performance Analysis on Depth and Straight Motion Control based on Control Surface Combinations for Supercavitating Underwater Vehicle)

  • 유범열;모혜민;김승균;황종현;박정훈;전윤호
    • 한국군사과학기술학회지
    • /
    • 제24권4호
    • /
    • pp.435-448
    • /
    • 2021
  • This study describes the depth and straight motion control performance depending on control surface combinations of a supercavitating underwater vehicle. When an underwater vehicle experiences supercavitation, friction resistance can be minimized, thus achieving the effect of super-high-speed driving. Six degrees of freedom modeling of the underwater vehicle are performed and the guidance and control loops are designed with not only a cavitator and an elevator, but also a rudder and a differential elevator to improve the stability of the roll and yaw axis. The control performance based on the combination of control surfaces is analyzed by the root-mean-square error for keeping depth and straight motion.

항공기 요동보상을 위한 SAR시스템의 타이밍 제어 기법 (A Novel Timing Control Method for Airborne SAR Motion Compensation)

  • 이현익
    • 한국군사과학기술학회지
    • /
    • 제13권3호
    • /
    • pp.453-460
    • /
    • 2010
  • For high quality image acquisition, compensating air-vehicle motion is essential for airborne SAR system. This paper describes a timing control based motion compensation method for airborne SAR system. Efficient timing control is critical for SAR system since it maintains many timing signals and timing setting for the signals should be updated frequently. This paper proposes Timing Cluster method as an efficient means for timing control of SAR system. Moreover, this paper suggests a simple and efficient method to compensate air-vehicle motion based on the Timing Cluster method. Timing Cluster method enables SAR system to control the timing in a timing noncritical way just maintaining little amount of information.

자율주행 자동차 정지 거동에서의 인지 불확실성을 고려한 확률적 모델 예측 제어 (Stochastic Model Predictive Control for Stop Maneuver of Autonomous Vehicles under Perception Uncertainty)

  • 김상윤;조아라;이경수
    • 자동차안전학회지
    • /
    • 제14권4호
    • /
    • pp.35-42
    • /
    • 2022
  • This paper presents a stochastic model predictive control (SMPC) for stop maneuver of autonomous vehicles considering perception uncertainty of stopped vehicle. The vehicle longitudinal motion should achieve both driving comfortability and safety. The comfortable stop maneuver can be performed by mimicking acceleration profile of human driving pattern. In order to implement human-like stop motion, we propose a reference safe inter-distance and velocity model for the longitudinal control system. The SMPC is used to track the reference model which contains the position uncertainty of preceding vehicle as a chance constraint. We conduct simulation studies of deceleration scenarios against stopped vehicle in urban environment. The test results show that proposed SMPC can execute comfortable stop maneuver and guarantee safety simultaneously.