• 제목/요약/키워드: vehicle modelling

검색결과 113건 처리시간 0.024초

주퇴충격하중을 받는 궤도차량 구조물의 천이응력해석 (Transient stress analysis of tracked vehicle structures under recoil impact load)

  • 이영신;김용환;김영완;김동수;성낙훈
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.111-119
    • /
    • 1993
  • In this study, the transient impact structural stress analysis of tracked vehicle structures under recoil impact load is investigated. ANSYS, ABAQUS Code are used for modelling and analytical procedures. The highest maximum Tresca stress occurs on race ring portion and its stress level is (.sigma.$_{T}$)$_{max}$ =20-40kgf/m $m^{2}$. The second highest stress occurs on upper plate of chassis and down plate of turret. The maximum stress level increases with loading direction and elevation angle. The results from liner static load analysis are very much different with impact analysis. Therefore, the practical solutions of structures under impact load can be obtained by only nonlinear transient impact analysis. The impact stress analysis of the steel vehicle structures is conducted. The maximum stress level is less than (.sigma.$_T/)$_{max}$m $m^{2}$. So, the design concept of steel structures can be adapted for new alternatives.s.s.s..s.

  • PDF

동력차용 대차프레임의 피로강도평가 (Fatigue Strength Evaluation of Bogie Frame for Power Car)

  • 이학주;한승우;;이상록
    • 연구논문집
    • /
    • 통권27호
    • /
    • pp.57-73
    • /
    • 1997
  • The bogie between the track and the railway vehicle body, is one of the most important component in railroad vehicle. Its effects on the safety of both passengers and vehicle itself, and on the overall performance of the vehicle such as riding quality, noise and vibration are critical. The bogie is mainly consisted of the bogie frame, suspensions, wheels and axles, braking system, and transmission system. The complex shapes of the bogie frame and the complicate loading condition (both static and dynamic) induced in real operation make it difficult to design the bogie frame fulfilling all the requirements. The complicated loads applied to the bogie frame are i) static load due to the weight of the vehicle and passengers, ii) quasi-static load due to the rolling in curves iii) dynamic load due to the relative motion between the track, bogie, and vehicle body. In designing the real bogie frame, fatigue analysis based on the above complicated loading conditions is a must. In this study, stress analysis of the bogie frame has been performed for the various loading conditions according to the UIC Code 6 15-4. Magnitudes of the stress amplitude and mean stress were estimated based on the stress analysis results to simulate the operating loads encountered in service. Fatigue strength of the bogie frame was evaluated by using the constant life diagram of the material. 3-D surface modelling, finite element meshing, and finite element analysis were performed by Pro-Engineer, MSC/PATRAN, and MSC/NASTRAN, respectively.

  • PDF

Non-Stationary Response of a Vehicle Obtained From a Series of Stationary Responses

  • Karacay, Tuncay;Akturk, Nizami;Eroglu, Mehmet;Ba
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1565-1571
    • /
    • 2004
  • Ride characteristics of a vehicle moving on a rough ground with changing travel velocity are analyzed in this paper. The solution is difficult due to the non-stationary characteristics of the problem. Hence a new technique has been proposed to overcome this difficulty. This new technique is employed in the analysis of ride characteristics of a vehicle with changing velocity in the time/frequency domain. It is found that the proposed technique gives successful results in modelling non-stationary responses in terms of a series of stationary responses.

수치적 방법에 의한 승용차 동적해석 (Dynamic analysis of vehicle system using numerical method)

  • 이종원;박윤식;조영호
    • 오토저널
    • /
    • 제5권3호
    • /
    • pp.45-55
    • /
    • 1983
  • This paper discussed about Application Technique of Numerical Methods for large structure. The dynamic behaviours of a vehicle were investigated through finite element modelling. After dividing a vehicle body into three substructures, Basic Mass System was composed of 60 flexual modes which was obtained from the dynamic characteristics of each substructure using Modal Synthesis Method. Engine, transmission and rear axle, etc. were added to Basic Mass Model, consequently Full Mass System was constructed by 72 degree of freedoms. Full Mass System was analyzed over the frequency range 0.5-50.0 Hz under the loading conditions which were Stationary Gaussian Random Process. Results and discussions provided the guidelines to eliminate resonances among the parts and to improve the Ride Quality. The Absorbed Power was used as a standard to determine the Ride Quality. The RMS value of driver's vertical acceleration was obtained 0.423g from the basic model and 0.415g from the modified model.

  • PDF

소규모 도시를 위한 전전기 자동차 세어링 서비스 시스템 모델링 및 분석 연구 (Modelling and Analysis for Sharing of Full Electric Vehicles in Small-sized Cities)

  • 진영근;조현섭
    • 한국산학기술학회논문지
    • /
    • 제13권4호
    • /
    • pp.1857-1862
    • /
    • 2012
  • 소규모 도시에서는 지하철과 같은 대규모의 구축비용과 운용비용이 필요한 저공해 대중교통 시스템을 구축하기가 어렵다. 본 연구에서는 환경개선 및 자원의 효율적인 사용이 가능한 전기자동차 세어링 서비스 프레임 워크를 기반으로 하는 소규모도시를 위한 대중교통 시스템을 제시한다. 제시한 시스템의 대중교통 수단으로의 유효성을 시뮬레이션 하였으며, 세어링 시스템을 도입하는 경우 출퇴근 시간대의 혼잡도가 줄어드는 것을 알 수 있었다.

공기제동 시스템의 감속도 제어기 설계 (Design of Deceleration Controller for Air Braking System)

  • 이광국;김원경;김명룡;윤성철;백광선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.696-701
    • /
    • 2004
  • Electric vehicle that is manufactured present by development of electric vehicle technology were available automatic driving. Control of air breaking system for precision stopping is important at automatic driving. Current Electric vehicle is doing precision stopping using braking force control. Braking force control is difficult to take static deceleration by rail condition or change of friction coefficient. Therefore, Proposed the controller in this study is deceleration controller. Designed controller is a robust controller that take state control characteristic for modelling error.

  • PDF

원격무인 잠수정의 자기동조 위치제어 (Self-Tuning Position Control of a Remotely Operated Vehicle)

  • 이판묵
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.551-551
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

원격무인 잠수정의 자기동조 위치제어 (Self-Tuning Position Control of a Remotely Operated Vehicle)

  • 이판묵
    • 한국해양공학회지
    • /
    • 제3권2호
    • /
    • pp.51-58
    • /
    • 1989
  • In general, a remotely operated vehicle(ROV) operates at deep sea. The control system of ROV is composed of two local loops; the first loop placed on the surface vessel monitors and manipulates the attitude of the ROV using joystick, and the second part on the ROV automatically controls thrusters and acquires positional data. This paper presents a position control simulation of a ROV using an adaptive controller and discusses the control effects of two different conditions. The design of an adaptive control system is obtained by the application of a self-tuning controller with the minimization of an appropriate cost function. The parameters of the control system are estimated by a recursive least square method(RLS). In the simulation, a Runge-Kutta method is used for the numerical integration and the generated outputs are obtained by adding measurement errors. Additionally, this paper discusses the mathematical modelling of a ROV and make a survey of control systems.

  • PDF

차량 능동현가시스템에 대한 강인 제어 해석 (Analysis of an Robust Control for a Vehicle Active Suspension System)

  • 김주용
    • 유공압시스템학회논문집
    • /
    • 제7권3호
    • /
    • pp.20-27
    • /
    • 2010
  • A vehicle suspension system performs two functions, the ride quality and the stability, which conflict with each other. An active suspension system has an external energy source, from which energy is always supplied to the system for continuous control of vehicle motion. Therefore, an active suspension system can have even more improved performance. Some control laws have been proposed for active suspension system, but in this paper, an optimal variable structure control(VSC) is proposed. The VSC method is well suited for a class of nonlinear system and can address the robustness issues to constant modelling errors and disturbances. This paper develops an optimal VSC controller and compares its performance to those of a passive suspension system and an active suspension system with an optimal controller. The transient and frequency responses are analyzed respectively.

  • PDF

A Study on the Modelling and Control Method of an Anti - lock Brake System

  • Ki, Lim-Chul;Hoon, Song-Jeong;Suck, Boo-Kwang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.112-112
    • /
    • 2001
  • An Anti-lock Brake System ABS is developed to increase the stability of vehicle and to reduce the stopping distance when braking manoeuvres by measuring the wheel and vehicle speed. An ABS mathematical model which describes the dynamics of vehicle and calculate the stopping distance, is explained in this paper. To proceed this study, a mathematical model is produced with simulink software package. Although the model considered here is relatively simple, it retains the essential dynamics of the system. The results are evaluated at the various driving or road conditions. The results from mathematical model show that ABS reduces the stopping distance at the various road conditions. This mathematical model could be ...

  • PDF