• 제목/요약/키워드: vehicle dynamics

검색결과 969건 처리시간 0.026초

시변절환면을 갖는 슬라이딩 모드에 의한 차량의 요-모멘트 제어 (Control of Vehicle Yaw Moment using Sliding Mode with Time-Varying Switching Surface)

  • 이창노;양현석;박영필
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.666-672
    • /
    • 2003
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving condition and be robust to the parameter uncertainties in the plant model. Control performance is evaluated from the simulation for the vehicle of real parameters on the road with various tire-road frictions.

자기부상열차/가이드웨이 연성 모델링 연구 (Coupling Model of the Maglev Vehicle/Guideway)

  • 한형석;성호경;김영중;김병현
    • 한국철도학회논문집
    • /
    • 제10권2호
    • /
    • pp.243-250
    • /
    • 2007
  • In general the Maglev vehicle is run over the elevated track called guideway. Since the guideway is elevated, the flexibility of the guideway has an effect on the dynamic responses of a vehicle such as its stability and ride quality. To improve the running performance of the Maglev vehicle and design a cost effective guideway using the dynamic analysis, the dynamic analysis of the system requires the coupling model of the Maglev vehicle and guideway. A coupling model based on multibody dynamics is proposed and programmed. With the program, the UTM01, a low speed Maglev vehicle, is analyzed and discussed.

전차량의 3차원 동역학 모델 (Three-Dimensional Dynamic Model of Full Vehicle)

  • 민경득;김영철
    • 전기학회논문지
    • /
    • 제63권1호
    • /
    • pp.162-172
    • /
    • 2014
  • A three-dimensional dynamic model for simulating various motions of full vehicle is presented. The model has 16 independent degrees of freedom (DOF) consisting of three kinds of components; a vehicle body of 6 DOF, 4 independent suspensions equipped at every corner of the body, and 4 tire models linked with each suspension. The dynamic equations are represented in six coordinate frames such as world fixed coordinate, vehicle fixed coordinate, and four wheel fixed coordinate frames. Then these lead to the approximated prediction model of vehicle posture. Both lateral and longitudinal dynamics can be computed simultaneously under the conditions of which various inputs including steering command, driving torque, gravity, rolling resistance of tire, aerodynamic resistance, etc. are considered. It is shown through simulations that the proposed 3D model can be useful for precise design and performance analysis of any full vehicle control systems.

97-신조 무궁화 객차의 차량동특성 해석 및 시험 (Analysis and Test of Vehicle Dynamics for '97-New Mugunghwa Coaches)

  • 양희주;김진태;김필환;이찬우
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.494-501
    • /
    • 1998
  • This Paper describes the evaluation methods and criteria used to verify running Performance of railway vehicle, and shows results of vehicle dynamics simulation and running performance tests for New Mugunghwa Coaches that were designed and manufactured by DHI in 1997. Through running performance test of New Mugunghwa Coaches, Vibration, Ride Comfort were measured on the condition of service operation. As a results, each simulation and test results meet the criteria proposed by Korean National Railroad(KNR) and Korea Railroad Research Institute(KRRI).

  • PDF

1축 대차의 개발 (Development of single axle bogie)

  • 양희주;임용규;김진태;오형식;오택렬
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 춘계학술대회 논문집
    • /
    • pp.125-134
    • /
    • 2000
  • This paper presents the results of vehicle dynamics simulation for development of single axle bogie for freight vehicle. Those results consists of hunting stability, ride comfort and curving performance such as derailment ratio, unloading ratio. Dynamic behaviors of vehicle having single axle bogie is carried out using the multi-body dynamics simulation program(VAMPIRE). The results of analysis meet the criteria proposed by Korean National Railroad(KNR) and Korea Railroad Research Institute(KRRI).

  • PDF

ROAD CROWN, TIRE, AND SUSPENSION EFFECTS ON VEHICLE STRAIGHT-AHEAD MOTION

  • LEE J-H.;LEE J. W.;SUNG I. C.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.183-190
    • /
    • 2005
  • During normal operating conditions, a motor vehicle is constantly subjected to a variety of forces, which can adversely affect its straight-ahead motion performance. These forces can originate both from external sources such as wind and road and from on-board sources such as tires, suspension, and chassis configuration. One of the effects of these disturbances is the phenomenon of vehicle lateral-drift during straight-ahead motion. This paper examines the effects of road crown, tires, and suspension on vehicle straight-ahead motion. The results of experimental studies into the effects of these on-board and external disturbances are extremely sensitive to small changes in test conditions and are therefore difficult to guarantee repeatability. This study was therefore conducted by means of computer simulation using a full vehicle model. The purpose of this paper is to gain further understanding of the straight-ahead maneuver from simulation results, some aspects of which may not be obtainable from experimental study. This paper also aims to clarify some of the disputable arguments on the theories of vehicle straight-ahead motion found in the literature. Tire residual aligning torque, road crown angle, scrub radius and caster angle in suspension geometry, were selected as the study variables. The effects of these variables on straight-ahead motion were evaluated from the straight-ahead motion simulation results during a 100m run in free control mode. Examination of vehicle behavior during straight-ahead motion under a fixed control mode was also carried out in order to evaluate the validity of several disputable arguments on vehicle pull theory, found in the literature. Finally, qualitative comparisons between the simulation results and the test results were made to support the validity of the simulation results.

다물체 시스템의 동적 최적화 (Dynamic Optimization of Multi-body Systems)

  • 이종년
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.51-55
    • /
    • 2002
  • This paper presents a systematic methodology and formulation for determining optimal strategies of multi-body dynamic systems, which is based on multi-body dynamics, design sensitivity, and optimization techniques, and is applicable to a wide variety of mechanical systems. The particular application discussed in this paper considers a vehicle model with four-wheel steeling capability, and the presented methodology determines an optimal steering angle ratio strategy for the vehicle. It is shown that such a strategy can improve the ride stability of the vehicle, during a variety of maneuvers, when compared against similar strategies obtained from linear and simplified vehicle models.

Design and analysis of a control system for a multi-magnet levitation system

  • Kweon, Soon-Man;Kim, Seog-Joo;Kim, Jong-Moon;Kim, Kook-Hun;Kim, Yong-Joo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1332-1336
    • /
    • 1990
  • This paper deals with some analytical and experimental aspects to control a multi-magnet suspended vehicle. Because the response of a multi-magnet vehicle shows mutually coupled interaction, an analytical description of the vehicle dynamics is necessary. For numerical computations, a linearized modelling of vehicle dynamics is dicussed and computer simulation is carried out. And for the experiment, a test vehicle suspended by four magnets has been made and investigated by local control of each magnet. Two algorithms by PID and state feedback control law are used and compared with each other. Some kinds of disturbance characteristics and coupling effects of the width change of the test vehicle are experimented.

  • PDF

차량 제어 기술 및 선진 연구 동향 (Vehicle Dynamics Control Applications to Automobiles: Survey and Some New Trends)

  • 이경수;이준영
    • 제어로봇시스템학회논문지
    • /
    • 제20권3호
    • /
    • pp.298-312
    • /
    • 2014
  • This paper describes control applications in automobiles. Many aspects of automotive applications of advanced control methods, which include suspension systems, stability control systems, engines, hybrid vehicle control systems, electric vehicle controls systems, advanced driver assistance systems and automated driving control systems, are reviewed. The control methods used in each area are briefly reviewed to help readers understand the applicability and effectiveness of these methods. In addition, some new trends in the research of automotive applications are described.

유연궤도를 고려한 자기부상열차 주행 시뮬레이션 (Simulation of a Maglev Vehicle Running on the Flexible Guideway)

  • 한형석;김영중;신병천;권정일
    • 한국철도학회논문집
    • /
    • 제9권4호
    • /
    • pp.499-503
    • /
    • 2006
  • Maglev vehicles, which are levitated and propelled by electromagnets, often run on elevated flexible guideways comprised of steel, aluminum and concrete. Therefore, an analysis of the dynamic interaction between the Maglev vehicle and the flexible guideway is needed in the design of the critical speed, ride, controller design and weight reduction of the vehicle. This study introduces a dynamic interaction simulation technique that applies structural dynamics. Because the proposed method uses detailed 3D FE models, it is useful to analyze the deformation of the elevated flexible guideway, the dynamic stress, and the motion of the vehicle. By applying the proposed method to an urban transit Maglev vehicle, UTM01, the dynamic response is simulated and validated. From the result of the study, we concluded that the simulation of dynamic interaction between the Maglev vehicle and the flexible guideway is possible and a potential of using computational mechanics.