• 제목/요약/키워드: vehicle classification method

검색결과 174건 처리시간 0.029초

도시 구조물 분류를 위한 3차원 점 군의 구형 특징 표현과 심층 신뢰 신경망 기반의 환경 형상 학습 (Spherical Signature Description of 3D Point Cloud and Environmental Feature Learning based on Deep Belief Nets for Urban Structure Classification)

  • 이세진;김동현
    • 로봇학회논문지
    • /
    • 제11권3호
    • /
    • pp.115-126
    • /
    • 2016
  • This paper suggests the method of the spherical signature description of 3D point clouds taken from the laser range scanner on the ground vehicle. Based on the spherical signature description of each point, the extractor of significant environmental features is learned by the Deep Belief Nets for the urban structure classification. Arbitrary point among the 3D point cloud can represents its signature in its sky surface by using several neighborhood points. The unit spherical surface centered on that point can be considered to accumulate the evidence of each angular tessellation. According to a kind of point area such as wall, ground, tree, car, and so on, the results of spherical signature description look so different each other. These data can be applied into the Deep Belief Nets, which is one of the Deep Neural Networks, for learning the environmental feature extractor. With this learned feature extractor, 3D points can be classified due to its urban structures well. Experimental results prove that the proposed method based on the spherical signature description and the Deep Belief Nets is suitable for the mobile robots in terms of the classification accuracy.

푸리에 변환 및 이미지 증강을 통한 분류 성능 최적화에 관한 연구 (A Study on Optimization of Classification Performance through Fourier Transform and Image Augmentation)

  • 김기현;김성목;김용수
    • 품질경영학회지
    • /
    • 제51권1호
    • /
    • pp.119-129
    • /
    • 2023
  • Purpose: This study proposes a classification model for implementing condition-based maintenance (CBM) by monitoring the real-time status of a machine using acceleration sensor data collected from a vehicle. Methods: The classification model's performance was improved by applying Fourier transform to convert the acceleration sensor data from the time domain to the frequency domain. Additionally, the Generative Adversarial Network (GAN) algorithm was used to augment images and further enhance the classification model's performance. Results: Experimental results demonstrate that the GAN algorithm can effectively serve as an image augmentation technique to enhance the performance of the classification model. Consequently, the proposed approach yielded a significant improvement in the classification model's accuracy. Conclusion: While this study focused on the effectiveness of the GAN algorithm as an image augmentation method, further research is necessary to compare its performance with other image augmentation techniques. Additionally, it is essential to consider the potential for performance degradation due to class imbalance and conduct follow-up studies to address this issue.

자율주행 자동차의 실 도로 차선 변경을 위한 장애물 검출 및 경로 계획에 관한 연구 (A Research of Obstacle Detection and Path Planning for Lane Change of Autonomous Vehicle in Urban Environment)

  • 오재석;임경일;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제21권2호
    • /
    • pp.115-120
    • /
    • 2015
  • Recently, in automotive technology area, intelligent safety systems have been actively accomplished for drivers, passengers, and pedestrians. Also, many researches are focused on development of autonomous vehicles. This paper propose the application of LiDAR sensors, which takes major role in perceiving environment, terrain classification, obstacle data clustering method, and local map building for autonomous driving. Finally, based on these results, planning for lane change path that vehicle tracking possible were created and the reliability of path generation were experimented.

루프검지기와 피에조 센서를 이용한 교통정보 수집시스템 설계 (Design of Collecting System for Traffic Information using Loop Detector and Piezzo Sensor)

  • 양승훈;한경호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2956-2958
    • /
    • 2000
  • This paper describes the design of a real time traffic data acquisition system using loop detector and piezzo sensor. Loop detector is the cheapest method to measure the speed and piezzo is used to detect the vehicle axle information. A ISA slot based I/O board is designed for data acquisition and PC process the raw traffic data and transfer the data to the host system. Simulation kit is designed with toy car kits. simulated loop detector and piezzo sensor. The data acquisition system collects up to 10 lane highway traffic data such as vehicle count. speed. length axle count. distance between the axles. The data is processed to generate traffic count, vehicle classification, which are to be used for ITS. The system architecture and simulation data is included and the system will be tested for field operation.

  • PDF

실시간 주행성 분석에 기반한 6×6 스키드 차량의 야지 고속 자율주행 방법 (A High-Speed Autonomous Navigation Based on Real Time Traversability for 6×6 Skid Vehicle)

  • 주상현;이지홍
    • 제어로봇시스템학회논문지
    • /
    • 제18권3호
    • /
    • pp.251-257
    • /
    • 2012
  • Unmanned ground vehicles have important military, reconnaissance, and materials handling application. Many of these applications require the UGVs to move at high speeds through uneven, natural terrain with various compositions and physical parameters. This paper presents a framework for high speed autonomous navigation based on the integrated real time traversability. Specifically, the proposed system performs real-time dynamic simulation and calculate maximum traversing velocity guaranteeing safe motion over rough terrain. The architecture of autonomous navigation is firstly presented for high-speed autonomous navigation. Then, the integrated real time traversability, which is composed of initial velocity profiling step, dynamic analysis step, road classification step and stable velocity profiling step, is introduced. Experimental results are presented that demonstrate the method for a $6{\times}6$ autonomous vehicle moving on flat terrain with bump.

형상 정보와 모션 정보 융합을 통한 움직이는 물체 인식 (Moving Object Classification through Fusion of Shape and Motion Information)

  • 김정호;고한석
    • 전자공학회논문지CI
    • /
    • 제43권5호
    • /
    • pp.38-47
    • /
    • 2006
  • 기존의 인식 방법은 물체에 대한 형상 정보 또는 움직임을 특징으로 한 단일 인식기를 사용한다. 하지만, 기존의 단일 특징 기반의 단일 인식기를 사용하는 방법의 인식 성능은 물체의 영역에 대한 정확한 검출에 크게 의존하는 단점을 가진다. 본 논문에서는 이러한 기존 인식방법의 단점을 해결하고, 인식의 신뢰성을 높이기 위해서 세 가지 인식기에 의한 각 결과를 Bayesian을 이용하여 융합하는 새로운 인식 방법을 제안한다. 첫 번째 인식기는 푸리에 묘사자로부터 얻은 형상 정보를 특징으로 한 신경망을 사용하고, 두 번째 인식기는 형상 정보에 대한 기울기를 바탕으로 한 통계적인 방법을 사용한다. 또한. 세 번째 인식기는 검출된 물체의 일정 부분의 움직임에 대한 모션 정보를 특징으로 하여 인식한다. 본 논문의 실험결과에서 제안한 결과 융합방법은 기존의 Majority Voting과 Weight Average Score 방법에 비해서 더 우수한 인식 성능을 보여준다.

다중센서 영상 기반의 지상 표적 분류 알고리즘 (Ground Target Classification Algorithm based on Multi-Sensor Images)

  • 이은영;구은혜;이희열;조웅호;박길흠
    • 한국멀티미디어학회논문지
    • /
    • 제15권2호
    • /
    • pp.195-203
    • /
    • 2012
  • 본 논문은 다중센서 영상을 이용한 결정 융합 기반의 지상 표적 분류 알고리즘 및 특징 추출 기법을 제안한다. 표적의 인식률 향상을 위하여 가중 투표 방법을 적용함으로써 개별 분류기로부터 획득된 결과를 융합하였다. 또한 개별 센서 영상 내에 속한 표적을 분류하기 위해 CCD 영상으로부터 획득한 CM 영상의 밝기 차이와 FLIR 영상 내 표적의 윤곽선 정보 및 차량과 포탑의 너비 비율을 이용하여 스케일과 회전변화에 강인한 특징들을 추출하였다. 마지막으로 실험을 통하여 본 논문에서 제안한 지상 표적 분류 알고리즘과 특징 추출 기법에 대한 성능을 검증한다.

Al 기법을 이용한 차량 정보 수집 장비 개발 (The Development of the Vehicles Information Detector)

  • 문학룡;류숭기;김영춘;변상철;최도혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.1283-1285
    • /
    • 2002
  • This study is developed vehicle information detector using loop and piezo sensors. This study would analyze the over all problems concerning our road conditions, environmental matters and unique features of our traffic matters; moreover, with these it would develope the hardware, software, car classification algorithm applied by artificial intelligence and traffic monitoring program which can be easily fixed. This can be divided into traffic detecting algorithm and car classification algorithm. Especially, we have developed the car classification algorithm used by C-means Fuzzy Clustering method.

  • PDF

타이어에서 발생하는 초음파 신호의 주기성 검출에 의한 손상 분별 (The Damage Classification by Periodicity Detection of Ultrasonic Wave Signal to Occur at the Tire)

  • 오영달;강대수
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권6호
    • /
    • pp.107-111
    • /
    • 2010
  • 차량 주행 중에 타이어에서 발생하는 초음파를 이용하여 손상 물질에 의한 타이어의 손상을 검출하는 방법에 대해 연구하였다. 손상이 있는 타이어는 회전 주기성이 있는 초음파 신호가 발생하므로 주기성을 검출하기 위해 포락선 검출 전처리 과정을 거친 후 자기상관함수를 사용하였다. 실험에서는 손상된 타이어의 1회전 시간과 자기상관함수를 이용해 구한 주기가 같은 것으로 나타났다. 이로 인해 타이어의 손상 유무를 분별할 수 있는 결과를 도출하였다.

딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로 (Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image)

  • 최석근;이승기;강연빈;성선경;최도연;김광호
    • 한국측량학회지
    • /
    • 제38권1호
    • /
    • pp.23-33
    • /
    • 2020
  • 최근 UAV (Unmanned Aerial Vehicle)를 이용하여 고해상도 영상을 편리하게 취득할 수 있게 되면서 저비용으로 소규모 지역의 관측 및 공간정보 제작이 가능하게 되었다. 특히, 농업환경 모니터링을 위하여 작물생산 지역의 피복지도 생성에 대한 연구가 활발히 진행되고 있으며, 랜덤 포레스트와 SVM (Support Vector Machine) 및 CNN(Convolutional Neural Network) 을 적용하여 분류 성능을 비교한 결과 영상분류에서 딥러닝 적용에 대하여 활용도가 높은 것으로 나타났다. 특히, 위성영상을 이용한 피복분류는 위성영상 데이터 셋과 선행 파라메터를 사용하여 피복분류의 정확도와 시간에 대한 장점을 가지고 있다. 하지만, 무인항공기 영상은 위성영상과 공간해상도와 같은 특성이 달라 이를 적용하기에는 어려움이 있다. 이러한 문제점을 해결하기 위하여 위성영상 데이터 셋이 아닌 UAV를 이용한 데이터 셋과 국내의 소규모 복합 피복이 존재하는 농경지 분석에 활용이 가능한 딥러닝 알고리즘 적용 연구를 수행하였다. 본 연구에서는 최신 딥러닝의 의미론적 영상분류인 DeepLab V3+, FC-DenseNet (Fully Convolutional DenseNets), FRRN-B (Full-Resolution Residual Networks) 를 UAV 데이터 셋에 적용하여 영상분류를 수행하였다. 분류 결과 DeepLab V3+와 FC-DenseNet의 적용 결과가 기존 감독분류보다 높은 전체 정확도 97%, Kappa 계수 0.92로 소규모 지역의 UAV 영상을 활용한 피복분류의 적용가능성을 보여주었다.