• 제목/요약/키워드: vehicle classification method

검색결과 174건 처리시간 0.02초

SVM을 이용한 실시간 차량 인식 기법 (Real-time Vehicle Recognition Mechanism using Support Vector Machines)

  • 장재건
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1160-1166
    • /
    • 2006
  • 혼잡한 현대의 교통 상황에서 교통질서를 유지하기 위해 차량에 대한 정보를 아는 것은 매우 중요한 일이다. 본 논문은 차량의 정보를 아는데 있어서 가장 중요한 차량 번호판을 인식하는 새로운 기법을 소개한다. 제안하는 기법은 물체를 분류하는데 있어서 다른 방법보다 우수하다고 알려진 SVM을 이용한다. 번호판 영역을 찾는데는 이중분류 SVM을 이용하고 번호판 문자 인식에서는 다중 분류 SVM을 이용한다. 여러 단계의 영상처리 과정과 인식 과정을 거쳐서 실시간에 처리할 수 있는 시스템으로 여러 종류의 차량 번호판에 대한 인식도 가능하게 한다. 제안한 기법을 이용한 실제적 환경에서의 영상과 인식에 대한 실험결과를 통하여 성능을 입증하였다.

  • PDF

영상기반 교통정보 추출 알고리즘에 관한 연구 (A Study On the Image Based Traffic Information Extraction Algorithm)

  • 하동문;이종민;김용득
    • 대한교통학회지
    • /
    • 제19권6호
    • /
    • pp.161-170
    • /
    • 2001
  • 차량검출은 교통량 관측(모니터링)을 위해서 필요한 가장 기본적인 요소이다. 영상을 기반으로 한 교통정보추출 시스템은 다른 방식을 이용하는 시스템들과 비교했을 때 몇 가지 두드러진 장점을 가지고 있다. 그러나 영상기반 시스템에서는 영상에 포함된 그림자가 차량검출의 정확도를 저해하는 요소로 작용하는 데, 특히 이동 중인 차량에 의해서 발생하는 환성 그림자는 심각한 성능저하를 야기할 수 있다. 본 논문에서는 차량검출과 그림자 영향 제거를 위해서 배경 빼기와 에지 검출을 결합한 새로운 접근방법을 제안하였다. 제안한 방법은 노변의 지형지물에 의해서 발생하는 비활성 그림자가 크게 증가하는 상황에서도, 98(%)이상의 차량검출 정확도를 나타내었다. 본 논문에서 제안한 차량검출 방법을 기반으로 하여, 차량 추적, 차량 계수, 차종 분류, 그리고 속도 측정을 수행하여 각 차로의 부하를 나타내는 데 사용되는 차량 흐름과 관련된 여러 가지 교통정보를 추출하였다.

  • PDF

CCTV 영상과 딥러닝을 이용한 교량통행 차량하중 추정 (Estimation of Bridge Vehicle Loading using CCTV images and Deep Learning)

  • 배숙경;정우영;최수현;김병현;조수진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제28권3호
    • /
    • pp.10-18
    • /
    • 2024
  • 차량 하중은 교량의 열화를 일으키는 주된 원인 중 하나이다. 현재 WiM(Weigh-in-Motion)을 사용하여 통행 차량의 하중을 측정하고 있으나, WiM은 접촉식 센서로 설치 및 유지관리 비용이 큰 단점이 있다. 본 연구에서는 딥러닝과 CCTV 영상을 이용하여 비접촉식으로 교량 통행 차량 하중 이력을 추정하는 방법을 제안하였다. 제안된 방법은 물체 탐지 딥러닝 모델을 이용하여 통행 차종을 인식하고, 해당 차량의 하중을 국내 주요 차량 모델들의 공차중량에 근거하여 작성된 하중기반 7차종 분류표에 근거하여 추정한다. 물체 탐지 딥러닝 모델로는 Faster R-CNN 모델이 사용되었으며, Faster R-CNN 모델을 7차종 분류표에 따라 구축된 영상 학습데이터를 이용하여 학습시켰다. 학습된 딥러닝 모델의 성능은 교량 CCTV로 취득한 영상을 이용하여 검증하였다. 최종적으로 실제 교량 상부에 설치된 CCTV에서 취득한 영상을 이용하여 교량을 통행중인 차량 하중을 연속으로 추정함으로써 특정 시간동안 통행 차량의 하중 이력 그래프를 획득할 수 있음을 보였다.

A Vehicle Recognition Method based on Radar and Camera Fusion in an Autonomous Driving Environment

  • Park, Mun-Yong;Lee, Suk-Ki;Shin, Dong-Jin
    • International journal of advanced smart convergence
    • /
    • 제10권4호
    • /
    • pp.263-272
    • /
    • 2021
  • At a time when securing driving safety is the most important in the development and commercialization of autonomous vehicles, AI and big data-based algorithms are being studied to enhance and optimize the recognition and detection performance of various static and dynamic vehicles. However, there are many research cases to recognize it as the same vehicle by utilizing the unique advantages of radar and cameras, but they do not use deep learning image processing technology or detect only short distances as the same target due to radar performance problems. Radars can recognize vehicles without errors in situations such as night and fog, but it is not accurate even if the type of object is determined through RCS values, so accurate classification of the object through images such as cameras is required. Therefore, we propose a fusion-based vehicle recognition method that configures data sets that can be collected by radar device and camera device, calculates errors in the data sets, and recognizes them as the same target.

자동 목표물 인식 시스템을 위한 클러스터 기반 투영기법과 혼합 전문가 구조 (Cluster-based Linear Projection and %ixture of Experts Model for ATR System)

  • 신호철;최재철;이진성;조주현;김성대
    • 대한전자공학회논문지SP
    • /
    • 제40권3호
    • /
    • pp.203-216
    • /
    • 2003
  • In this paper a new feature extraction and target classification method is proposed for the recognition part of FLIR(Forwar Looking Infrared)-image-based ATR system. Proposed feature extraction method is "cluster(=set of classes)-based"version of previous fisherfaces method that is known by its robustness to illumination changes in face recognition. Expecially introduced class clustering and cluster-based projection method maximizes the performance of fisherfaces method. Proposed target image classification method is based on the mixture of experts model which consists of RBF-type experts and MLP-type gating networks. Mixture of experts model is well-suited with ATR system because it should recognizee various targets in complexed feature space by variously mixed conditions. In proposed classification method, one expert takes charge of one cluster and the separated structure with experts reduces the complexity of feature space and achieves more accurate local discrimination between classes. Proposed feature extraction and classification method showed distinguished performances in recognition test with customized. FLIR-vehicle-image database. Expecially robustness to pixelwise sensor noise and un-wanted intensity variations was verified by simulation.

자동차 제원 DB를 활용한 도로교통량 조사방안 연구 (A Study on Road Traffic Volume Survey Using Vehicle Specification DB)

  • 김지민;오동섭
    • 한국ITS학회 논문지
    • /
    • 제22권2호
    • /
    • pp.93-104
    • /
    • 2023
  • 도로법에 의거한 도로교통량 상시조사는 매설식 AVC를 통해 12종 차종분류가 이루어지고 있다. 하지만 매설식 AVC 장비는 차량과의 마찰, 도로 균열, 소성변형, 도로공사로 인한 센서의 물리적 파손 등으로 인해 장비 가동률이 낮고, 수집 정보의 정확도와 신뢰도 저하 문제가 발생하고 있다. 이로인해 장비보수 등 유지비용 또한 증가하고 있다. 이러한 문제를 해결하고자 비매설식 AVC 장비 도입을 위한 연구가 진행되고 있으나, 차종을 분류하기 위해 복수의 장비 또는 교통량 정보 매칭을 위한 별도의 DB 구축·운영이 필요하였다. 이에 본 연구에서는 자동차 관리법에 근거하여 운영 중인 자동차관리정보시스템(VMIS)의 차량 제원 정보와 번호판 자동인식 기술(ANPR)을 활용한 12종 차종분류 방안을 마련하고자 하였다. 이를 통해 기존 도로교통량 조사체계를 개선하고 자동차 제원 정보를 활용하여 친환경 차량 분류 등 도로교통량 통계 고도화, 다변화에 기여할 수 있을 것으로 기대된다.

퍼지 기법을 이용한 다수 레이저스캐너 기반 객체 인식 알고리즘 (Object Classification Algorithm with Multi Laser Scanners by Using Fuzzy Method)

  • 이기룡;좌동경
    • 한국ITS학회 논문지
    • /
    • 제13권5호
    • /
    • pp.35-49
    • /
    • 2014
  • 본 논문에서는 레이저스캐너만으로 이루어진 감지 시스템을 이용하여 도로 위에 있는 객체의 위치를 추정하고 분류하는 알고리즘을 제안한다. 각각의 레이저 스캐너에서 획득한 데이터는 그리드 맵을 사용하여 데이터를 융합하였으며, 팽창 연산과 레이블링 방법을 사용하여 측정 오차를 보정하였다. 추출한 객체의 정보(길이, 폭)를 입력으로 사용한 퍼지방법을 통해 객체를 보행자, 자전거, 차량으로 분류하였으며, 이러한 방법은 레이저스캐너로만 이루어진 감지 시스템의 정확도를 증가시켰다. 또한 본 논문에서는 실제 도로 환경에서 몇 가지 시나리오를 설정하여 실험을 하였다. 실험을 통해 감지 시스템이 객체를 정확히 분류하는지, GPS-RTK 장비를 사용하여 획득한 위치 정보와 비교하여 객체의 위치 정보를 정확히 추정하는지 검증하였다.

비젼 기반 차량 검출 및 교통 파라미터 추출 (Vision Based Vehicle Detection and Traffic Parameter Extraction)

  • 하동문;이종민;김용득
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제30권11호
    • /
    • pp.610-620
    • /
    • 2003
  • 다양한 그림자는 비젼 기반 차량 검출에서 오류를 발생시키는 주요 원인이다. 본 논문에서는 노면 표시 기반 방법과 배경 빼기 및 에지(BS & Edge) 방법이라는 두 가지 방안을 차량 검출과 그림자 제거를 위해 제안하였다. 노변의 지형 지물들로 인해서 발생하는 그림자의 영향이 크게 증가하는 상황에서의 실험을 통해서 96% 이상의 차량 검출 정확도를 나타냄을 확인하였다. 전술한 두 가지 방법을 기반으로 하여, 차량 추적, 차량 계수, 차종 분류, 그리고 속도 측정을 수행하여 각 차로의 부하를 나타내는 데 사용되는 차량 흐름과 관련된 여러 가지 교통 파라미터를 추출하였다.

Food Powder Classification Using a Portable Visible-Near-Infrared Spectrometer

  • You, Hanjong;Kim, Youngsik;Lee, Jae-Hyung;Jang, Byung-Jun;Choi, Sunwoong
    • Journal of electromagnetic engineering and science
    • /
    • 제17권4호
    • /
    • pp.186-190
    • /
    • 2017
  • Visible-near-infrared (VIS-NIR) spectroscopy is a fast and non-destructive method for analyzing materials. However, most commercial VIS-NIR spectrometers are inappropriate for use in various locations such as in homes or offices because of their size and cost. In this paper, we classified eight food powders using a portable VIS-NIR spectrometer with a wavelength range of 450-1,000 nm. We developed three machine learning models using the spectral data for the eight food powders. The proposed three machine learning models (random forest, k-nearest neighbors, and support vector machine) achieved an accuracy of 87%, 98%, and 100%, respectively. Our experimental results showed that the support vector machine model is the most suitable for classifying non-linear spectral data. We demonstrated the potential of material analysis using a portable VIS-NIR spectrometer.

단일 클래스 분류기를 사용한 차량 해킹 탐지 (Detection of Car Hacking Using One Class Classifier)

  • 서재현
    • 한국융합학회논문지
    • /
    • 제9권6호
    • /
    • pp.33-38
    • /
    • 2018
  • 본 논문에서는 단일 클래스만을 학습하여 차량에 대한 새로운 공격을 탐지한다. 분류 성능 평가를 위해 Car-Hacking 데이터셋을 사용한다. Car-Hacking 데이터셋은 실제 차량의 OBD-II 포트를 통해 CAN (Controller Area Network) 트래픽을 로깅하여 생성된다. 이 데이터셋에는 네 가지 공격 유형이 포함된다. 실험에 사용한 단일 클래스 분류기법은 정상 클래스만을 학습하여 비정상인 공격 클래스를 분류해내는 비지도 학습이다. 비지도 학습 방법을 사용하는 경우에 훈련 과정에서 네거티브 인스턴스를 사용하지 않기 때문에 고효율의 분류 성능을 내는 것은 어렵다. 하지만, 비지도 학습은 라벨이 없는 새로운 공격 데이터를 분류하는데 적합한 장점이 있다. 본 연구에서는 네트워크 침입탐지 시스템에서 서명기반의 규칙으로 탐지하기 어려운 새로운 공격 유형을 탐지하기 위해 단일 클래스 분류기를 사용한다. 제안 방법은 새로운 공격을 모두 탐지하고 정상데이터에 대해서도 효율적인 분류 성능을 보이는 파라미터 조합을 제시한다.