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I. INTRODUCTION

A spectrometer is a sensing device for classifying various 

materials based on the interactions between electromagnetic 

waves and the material. Radiated electromagnetic waves can 

be absorbed or reflected by a material. Therefore, the spec-

trum of the reflected electromagnetic wave as a function 

wavelength can be considered a fingerprint of the material. 

Among various spectrometers, a visible-near-infrared (VIS-

NIR) spectrometer is useful for analyzing materials and can 

be used to identify the constituents of food. VIS-NIR spec-

troscopy was first applied in agriculture by Norris to mea-

sure the moisture in grain [1]. Various spectrometers and 

pretreatment techniques have been developed for analyzing 

the constituents of various materials and foods [2–4]. Re-

cently, food products containing genetically modified orga-

nisms (GMO) have been studied using NIR spectroscopy [5]. 

Industrial or laboratory VIS-NIR spectrometers have ex-

cellent performance. However, these spectrometers are not 

suitable for use in various locations such as in homes or offi-

ces because of their size and cost. Therefore, portable VIS-

NIR spectrometers are being actively developed and validat-

ed [6]. 

In this paper, we classify eight food powders using a port-

able VIS-NIR spectrometer with three supervised classi-

fication methods that are generally used. Our experimental 

results demonstrate the potential for analyzing food ingre-

dients using a portable VIS-NIR spectrometer. 

The rest of the paper is organized as follows. In Section 

Ⅱ, we introduce the VIS-NIR spectroscopy for the identifi-
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cation of food constituents and discuss the disadvantages of 

existing laboratory VIS-NIR spectrometers. The portable 

VIS-NIR spectrometer, food powders, and supervised classi-

fication algorithms used in the experiment are then explained. 

In Section Ⅲ, we describe our machine learning process. 

We analyze the results of the three machine learning algo-

rithms used and the effect of the training set size in Section 

Ⅳ. Finally, we conclude with a discussion of our results. 

II. MATERIALS AND METHODS 

1. Portable VIS-NIR Spectrometer 

We use a portable VIS-NIR spectrometer from Stratio Inc. 

(www.stratiotechnology.com) called LinkSquare. LinkSquare 

in Fig. 1 is a Silicon (Si)-based VIS-NIR spectrometer that 

is significantly more affordable than the NIR spectrometers 

typically found in the laboratory. This spectrometer has two 

light sources, white LED and BULB, and measures within 

the wavelength range of 450–1,000 nm [7]. Table 1 provides 

the detailed specifications of LinkSquare. 

 

2. Food Powders and VIS-NIR Spectra 

In this paper, we evaluate eight common food powders 

that are visually indistinguishable: salt, sugar, cream, flour, 

bean, corn, rice, and potato powder. Fig. 2 shows the eight 

food powders selected. 

We measure the eight food powders using the portable 

VIS-NIR spectrometer. The process of spectral data acquisi- 
 

             
Fig. 1. LinkSquare and the process of spectral data acquisition. 

 

Table 1. Specifications of LinkSquare 

Company Stratio Inc. 

Name LinkSquare 

Measure wavelength range 450–1,000 nm 

Size 
114 mm × 23.9 mm × 23.9 mm 

(4.5 in × 9 in × 9 in) 

Weigh 57 g/2 oz 

Battery (active) Approximately 1,000 scans 

Battery (idle) > 24 hr 
  

 

Salt Sugar Cream Flour

Bean Corn Rice Potato 

Fig. 2. Eight food powders. 

 

tion as illustrated in Fig. 1, is conducted in a constant con-

dition of ambient illumination and measuring angle. The 

spectral data obtained with each light source of the spec-

trometer are shown in Fig. 3. 

III. CLASSIFICATION OF FOOD POWDERS 

1. Supervised Classif ication Methods 

In this paper, we use three supervised classification me-  

th ods for machine learning: support vector machine (SVM), k- 

 

 
(a) 

 

 
(b) 

Fig. 3. Spectral data: (a) white LED, (b) BULB. 
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nearest neighbors (kNN), and random forest (RF). SVM is 

one of the standard methods of classification and is most 

effective when the number of dimensions is the greater than 

the number of samples [8]. kNN utilizes a simple algorithm 

based on the distance between the training data and test data. 

It defines the nearby k training data as a neighbor and pre-

dicts the greatest number of labels among the k neighbors as 

the test label [9]. Proposed by Breiman, RF consists of sever-

al decision trees, and it is also described as ensemble learning 

[10]. RF uses the number of trees as an important hyperpa-

rameter. If the number of decision trees is small, the training 

speed will be fast but the accuracy will be low. Conversely, 

the larger the number of decision trees is, the higher the ac-

curacy but the slower the training speed. 

All machine learning methods are implemented in Python 

with the use of numpy, scipy, and scikit-learn [8]. 

 

2. Training and Validation Method 

Fig. 4 shows the machine learning process in this expe-

riment. We divide the total sample set (960 samples) into a 

training sample set (800 samples) and a validation sample set 

(160 samples). We then design the machine learning models 

with the training sample set using the three supervised classi-

fication methods. We demonstrate the performance of each 

model with the validation sample set. 

 

3. Optimal Parameter Selection 

We use the grid-search function to find the optimal pa-

rameters for the three machine learning methods. We set the 

suitable parameter ranges for SVM, kNN, and RF and then, 

find the optimal parameters for machine learning through 

repetitive experiments using the grid-search function. The 

detailed parameters for the experiment are given in Table 2. 

SVM can use a kernel function, and thus we consider the 

linear and radial basis function (RBF) kernel. The RBF ker-

nel has a parameter gamma, which defines how much influ-

ence a single training example has. Parameter C is called the 

penalty parameter, which controls the tradeoff between mar-

gin maximization and error minimization. The performance 

of kNN varies on the basis of parameter k, called n_nei-

ghbors in scikit-learn. In general, a larger k suppresses the 

effects of noise, but makes the classification boundaries  
 

 
Fig. 4. Training and validation process. 

Table 2. Parameter optimization 

Classification 

method
Range 

Selected optimal 

parameter

SVM  

Kernel Linear, RBF RBF

Gamma 0.001, 0.0001 0.0001

C 1, 10, 100, 1000 10

kNN  

n_neighbors 1–100 1

RF  

n_estimators 1–200 23

 

smoother. RF models with different parameter n_estimators 

which are the number of trees in the forest are evaluated. 

IV. CLASSIFICATION RESULTS 

1. Results and Confusion Matrix 

We verify the three machine learning models using the 

validation sample set. We evaluate the performance of the 

classification in terms of accuracy, recall, precision and F1 

score [11].  

Table 3 shows the results of the experiment. We observe 

that the three machine learning methods almost successfully 

classify all eight food powders. RF, kNN, and SVM achieve 

an accuracy of 87%, 98%, and 100%, respectively. SVM 

shows high performance because it transforms the non-linear 

spectral data into the maximum-margin hyperplane. 

We further investigate the confusion matrices for the three 

machine learning methods as shown in Fig. 5. Although 

kNN and RF have high accuracy, they fail to accurately cla-

ssify some food powders. In particular, 72% of the flour 

powder is misidentified as rice powder. 

 

2. Size of the Training Sample Set 

Next, we investigate the effect of the training sample set 

size for efficient machine learning training. We test iterative-

ly by changing the size of the training sample set. Fig. 6 

shows the effect of the training sample set size on the classi-

fication performance. The classification accuracy enhances as 

the training sample set size increases and plateaus after a cer-

tain size. We obtain as many training samples as we obtain 

to guarantee the classification performance of SVM, but  

 

Table 3. Classification results 

SVM (%) kNN (%) RF (%)

Accuracy 100 97.7 86.5

Recall 100 97.7 86.5

Precision 100 97.7 86.4

F1 score 100 97.7 86.5
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(a) 

 
(b) 

 
(c) 

Fig. 5. Confusion matrix: (a) SVM, (b) kNN, and (c) RF. 

 

RF requires more training samples than what we have ob-

tained. 

V. CONCLUSION  

We present the possibility of converging VIS-NIR spec-

troscopy and machine learning in this paper. Eight food 

powders are classified using a portable VIS-NIR spectro-

meter with three supervised classification methods. The  

 
Fig. 6. Effect of the training sample set size. 

 

successful classification results for the eight food powders 

show the feasibility of using a portable VIS-NIR spectro-

meter for analyzing food ingredients. As portable VIS-NIR 

devices develop further, they can be used for more varied 

purposes. 
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