Designing test case flows for water crossing operation of a wheeled vehicle is a new attempt for which very limited experiences exist. In this paper, a Function Flow Block Diagram(FFBD) and a Classification Tree Method(CTM) were combined to see if this method is viable to generate the test case flows at the functional analysis stage. It was found that this method can be practically used for the very complicated test case generation.
교통제어나 차량에 연관된 범죄 등에서 자동차의 인식에 관한 연구의 중요성 때문에 이에 관련된 연구는 오래전부터 수행되어 왔다. 본 논문에서는 차량이 주행할 때의 정보와 영상을 획득하여 제조회사별 차종을 인식하는 방법을 제안하고자 한다. 본 논문의 차종인식은 차량의 압력을 이용한 차폭 검출방법, 그리고 보다 더 정확한 인식률을 얻기 위한 레이저 거리계를 이용한 차고 검출방법, $3\sim5$종의 구별을 위 한 차량의 번호판 인식 방법을 조합함으로써 차량 인식의 오류를 줄이는 시스템을 구현하였다. 구현된 차종인식 시스템은 2차원 CCD에 의한 차량의 영상획득과 이를 통한 다양한 영상처리 알고리즘에 의해서 국내의 전 차종에 적용할 수 있으며, 실제의 실험 결과는 높은 인식률을 나타내었다.
With the development of autonomous vehicle, there has been active research on advanced driver assistance system for road marking detection using vision sensor and 3D Laser scanner. However, vision sensor has the weak points that detection is difficult in situations involving severe illumination variance, such as at night, inside a tunnel or in a shaded area; and that processing time is long because of a large amount of data from both vision sensor and 3D Laser scanner. Accordingly, this paper proposes a road marking detection and classification method using single 2D Laser scanner. This method road marking detection and classification based on accumulation distance data and intensity data acquired through 2D Laser scanner. Experiments using a real autonomous vehicle in a real environment showed that calculation time decreased in comparison with 3D Laser scanner-based method, thus demonstrating the possibility of road marking type classification using single 2D Laser scanner.
일반적으로 감시영상에서 움직이는 물체들은 배경빼기 혹은 프레임 차를 이용하여 추출된다. 하지만 객체에 의해서 만들어지는 그림자는 심각한 탐지의 오류를 야기시킬 수 있다. 특히, 도로 상에 설치된 감시카메라로부터 획득된 영상으로부터 차량 정보를 분석할 때, 차량에 의해서 생성되는 그림자로 인하여 차량의 모양을 왜곡시켜 부정확한 결과를 만든다. 때문에 그림자의 제거는 감시 영상 내에서의 정확한 객체 추출을 위해서 반드시 필요하다. 본 논문은 도로감시영상 내에서 움직이는 차량의 차종판별 성능을 향상시키기 위한 움직이는 객체 내에 만들어지는 그림자를 제거한다. 제거된 객체의 영역은 소실점을 이용하여 3차원 객체로 피팅(Fitting)한 후 측정된 데이터를 감독 학습하여 원하는 차종 판별결과를 얻는데 사용한다. 실험은 3가지 기계학습 방법{IBL, C4.5, NN(Neural Network)}을 이용하여 그림자의 제거가 차종의 판별성능에 미치는 결과의 평가한다.
PURPOSES : The purpose of this thesis is to evaluate the effectiveness of an active noise cancellation (ANC) system in reducing the traffic noise level against frequencies from the predictive model developed by previous research. The predictive model is based on ISO 9613-2 standards using the Noble close proximity (NCPX) method and the pass-by method. This means that the use of these standards is a powerful tool for analyzing the traffic noise level because of the strengths of these methods. Traffic noise analysis was performed based on digital signal processing (DSP) for detecting traffic noise with the pass-by method at the test site. METHODS : There are several analysis methods, which are generally divided into three different types, available to evaluate traffic noise predictive models. The first method uses the classification standard of 12 vehicle types. The second method is based on a standard of four vehicle types. The third method is founded on 5 types of vehicles, which are different from the types used by the second method. This means that the second method not only consolidates 12 vehicle types into only four types, but also that the results of the noise analysis of the total traffic volume are reflected in a comparison analysis of the three types of methods. The constant percent bandwidth (CPB) analysis was used to identify the properties of different frequencies in the frequency analysis. A-weighting was applied to the DSP and to the transformation process from analog to digital signal. The root mean squared error (RMSE) was applied to compare and evaluate the predictive model results of the three analysis methods. RESULTS : The result derived from the third method, based on the classification standard of 5 vehicle types, shows the smallest values of RMSE and max and min error. However, it does not have the reduction properties of a predictive model. To evaluate the predictive model of an ANC system, a reduction analysis of the total sound pressure level (TSPL), dB(A), was conducted. As a result, the analysis based on the third method has the smallest value of RMSE and max error. The effect of traffic noise reduction was the greatest value of the types of analysis in this research. CONCLUSIONS : From the results of the error analysis, the application method for categorizing vehicle types related to the 12-vehicle classification based on previous research is appropriate to the ANC system. However, the performance of a predictive model on an ANC system is up to a value of traffic noise reduction. By the same token, the most appropriate method that influences the maximum reduction effect is found in the third method of traffic analysis. This method has a value of traffic noise reduction of 31.28 dB(A). In conclusion, research for detecting the friction noise between a tire and the road surface for the 12 vehicle types needs to be conducted to authentically demonstrate an ANC system in the Republic of Korea.
This paper presents an vulnerable road user (VRU) classification and tracking algorithm using vision and LiDAR sensor fusion method for urban autonomous driving. The classification and tracking for vulnerable road users such as pedestrian, bicycle, and motorcycle are essential for autonomous driving in complex urban environments. In this paper, a real-time object image detection algorithm called Yolo and object tracking algorithm from LiDAR point cloud are fused in the high level. The proposed algorithm consists of four parts. First, the object bounding boxes on the pixel coordinate, which is obtained from YOLO, are transformed into the local coordinate of subject vehicle using the homography matrix. Second, a LiDAR point cloud is clustered based on Euclidean distance and the clusters are associated using GNN. In addition, the states of clusters including position, heading angle, velocity and acceleration information are estimated using geometric model free approach (GMFA) in real-time. Finally, the each LiDAR track is matched with a vision track using angle information of transformed vision track and assigned a classification id. The proposed fusion algorithm is evaluated via real vehicle test in the urban environment.
Lydon, Darragh;Taylor, S.E.;Lydon, Myra;Martinez del Rincon, Jesus;Hester, David
Smart Structures and Systems
/
제24권6호
/
pp.723-732
/
2019
Globally road transport networks are subjected to continuous levels of stress from increasing loading and environmental effects. As the most popular mean of transport in the UK the condition of this civil infrastructure is a key indicator of economic growth and productivity. Structural Health Monitoring (SHM) systems can provide a valuable insight to the true condition of our aging infrastructure. In particular, monitoring of the displacement of a bridge structure under live loading can provide an accurate descriptor of bridge condition. In the past B-WIM systems have been used to collect traffic data and hence provide an indicator of bridge condition, however the use of such systems can be restricted by bridge type, assess issues and cost limitations. This research provides a non-contact low cost AI based solution for vehicle classification and associated bridge displacement using computer vision methods. Convolutional neural networks (CNNs) have been adapted to develop the QUBYOLO vehicle classification method from recorded traffic images. This vehicle classification was then accurately related to the corresponding bridge response obtained under live loading using non-contact methods. The successful identification of multiple vehicle types during field testing has shown that QUBYOLO is suitable for the fine-grained vehicle classification required to identify applied load to a bridge structure. The process of displacement analysis and vehicle classification for the purposes of load identification which was used in this research adds to the body of knowledge on the monitoring of existing bridge structures, particularly long span bridges, and establishes the significant potential of computer vision and Deep Learning to provide dependable results on the real response of our infrastructure to existing and potential increased loading.
One of the difficult works in an autonomous driving system is detecting road lanes or objects in the road boundaries. Detecting and tracking a vehicle is able to play an important role on providing important information in the framework of advanced driver assistance systems such as identifying road traffic conditions and crime situations. This paper proposes a vehicle detection scheme based on deep learning to classify and tracking vehicles in a complex and diverse environment. We use the modified YOLO as the object detector and polynomial regression as object tracker in the driving video. With the experimental results, using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.
첨단교통체계(ITS: Intelligent Transportation Systems)는 효과적인 교통제어 및 안전증진을 추구하기 위하여 많은 연구와 사업이 진행 중이다. 이를 위하여 실시간으로 교통상황을 제어하는데 필요한 신뢰성 있는 교통정보를 얻기 위해 가장 많이 설치되어 있는 루프검지기를 통하여 기본적으로 교통량, 속도, 점유율 등의 자료를 수집할 수 있다. 본 연구에서는 국내에 가장 보편적으로 설치된 루프검지기에서 추출한 차량자기신호곡선(IVS: Inductive Vehicle Signature) 자료를 이용하여 차량길이 및 속도 등을 산출하고 이를 이용하여 차종을 구분하는 알고리즘을 개발하였다. 본 연구는 세가지 Case(소형-대형, 소형-중형-대형, 소형-중형-대형-특대형)로 구성되어 있으며, 각 Case에서 전체차량을 각 Class로 분류하는 기준이 되는 차량길이 기준값을 산출하였다. 일반적인 도로구간에서의 적용을 위해 시 공간적 이식성 Test를 하여 분석대상구간 외의 다른 구간에서 차량길이 기준값의 적용가능성을 검토하였다. 본 연구의 결과는 차종구분을 통해 세부적인 교통량 정보를 수집하고 도로를 통과하는 차량들의 차종구성을 파악하여 교통운영 및 전략수립 시에 활용자료로 이용 가능할 것으로 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.